Рентгенография - это метод исследования внутренней структуры объектов при помощи рентгеновских лучей. Отзывы, противопоказания. Рентген: методы и виды исследования Основные методы рентгеновского исследования и их характеристика


Рентгенологические методы исследования основаны на способности рентгеновских лучей проникать через органы и ткани человеческого организма.

Рентгеноскопия – метод просвечивания, осмотр исследуемого органа за специальным рентгеновским экраном.

Рентгенография – метод получения снимков, необходим для документального подтверждения диагноза заболевания, для мониторинга наблюдения за функциональным состоянием пациента.

Плотные ткани задерживают лучи в разной степени. Костная и паренхиматозная ткани способны задерживать рентгеновские лучи, поэтому не требуют специальной подготовки пациента. Для получения более достоверных данных о внутреннем строении органа применяют метод контрастного метода исследования, что определяет «видимость» этих органов. Метод основан на введении в органы специальных веществ, задерживающих рентгеновские лучи.

В качестве контрастных веществ при рентгенологическом исследовании органов желудочно – кишечного тракта (желудка и двенадцатиперстной кишки, кишечника) используют взвесь сульфата бария, при рентгеноскопии почек и мочевыводящих путей, желчного пузыря и желчевыводящих путей – йодконтрастные препараты.

Йодсодержащие контрастные препараты чаще вводят внутривенно. За 1-2 дня до исследования сестра должна провести пробу на переносимость пациента к контрастному веществу. Для этого очень медленно внутривенно вводят 1 мл контрастного вещества и наблюдают за реакцией пациента в течение суток. При появлении зуда, насморка, крапивницы, тахикардии, слабости, понижении АД применение рентгеноконтрастных веществ противопоказано!

Флюорография – крупнокадровое фотографирование с рентгенологического экрана на фотопленку малого размера. Метод используют для массового обследования населения.

Томография – получение снимков отдельных слоев изучаемой области: легких, почек, мозга, костей. Компьютерную томографию используют для получения послойных снимков исследуемой ткани.

Рентгенография органов грудной клетки

Цели исследования:

1.Диагностика заболеваний органов грудной клетки (воспалительные, опухолевые, и системные заболевания, пороки сердца и крупных сосудов, легкого, плевры.).

2.Контроль лечения заболевания.

Цели подготовки :

Подготовка:

5.Выясните, сможет ли пациент стоять необходимое для исследования время и задерживать дыхание.

6.Определите способ транспортировки.

7.Пациенту иметь при себе направление, амбулаторную карту или историю болезни. Если ранее были исследования легких, взять результаты (снимки).

8.Исследование проводится пациенту, обнаженному до пояса (возможна легкая футболка без рентгеноконтрастных застежек).

Рентгеноскопия и рентгенография пищевода, желудка и двенадцатиперстной кишки

Цель исследования - оценка рентгеноанатомии и функции пищевода, желудка и двенадцатиперстной кишки:

Выявление особенностей строения, пороков развития, отношения к окружающим тканям;

Определение нарушения моторной функции этих органов;

Выявление подслизистых и инфильтрирующих опухолей.

Цели подготовки :

1.Обеспечить возможность проведения исследования.

2.Получить достоверные результаты.

Подготовка:

1.Объясните пациенту суть исследования и правила подготовки к нему.

2.Получите согласие пациента на предстоящее исследование.

3.Проинформируйте пациента о точном времени и месте проведения исследования.

4.Попросите пациента повторить ход подготовки к исследованию, особенно в амбулаторных условиях.

5.За 2-3 суток до исследования из рациона питания пациента исключают продукты, вызывающие метеоризм (газообразование): ржаной хлеб, сырые овощи, фрукты, молоко, бобовые и др.

6. Ужин накануне вечером должен быть не позднее 19,00

7. Вечером накануне и утром не позднее чем за 2 часа до исследования пациенту ставят очистительную клизму.

8..Исследование проводится натощак, не нужно пить, курить, принимать лекарства.

9.При исследовании с контрастным веществом (барий для рентгенологических исследований) выяснить аллергоанамнез; способность проглотить контраст.

10. Убрать съемные протезы.

11.Пациенту необходимо иметь при себе: направление, амбулаторную карту/историю болезни, данные предыдущих исследований этих органов, если они проводилась.

12..Освободиться от стесняющей одежды и одежды, имеющей рентгеноконтрастные застежки.

Примечание. Солевое слабительное вместо клизмы давать нельзя,так как оно усиливает газообразование.

В отделении пациенту оставляют завтрак.

Историю болезни после исследования возвращают в отделение.

Возможные проблемы пациента

Настоящие:

1.Появление дискомфорта, болей при обследовании и/или подготовке к нему.

2.Невозможность проглотить барий из-за нарушенного глотательного рефлекса.

Потенциальные:

1.Риск развития болевого синдрома из-за спазмов пищевода и желудка, вызванные самой процедурой (особенно у пожилых) и при раздувании желудка.

2.Риск появления рвоты.

3. Риск развития аллергической реакции.

Рентгенологическое исследование толстого кишечника (ирригоскопия)

Рентгенологическое исследование толстого кишсчника проводят после введения в толстую кишку бариевой взвеси с помощью клизмы.

Цели исследования:

1. определение формы, положения, состояние слизистой оболочки, тонуса и перистальтики различных отделов толстой кишки.

2.Выявление пороков развития и патологических изменений (полипы, опухоли, дивертикулы, кишечную непроходимость).

Цели подготовки :

1.Обеспечить возможность проведения исследования.

2.Получить достоверные результаты.

Подготовка:

1.Объясните пациенту суть исследования и правила подготовки к нему.

2.Получите согласие пациента на предстоящее исследование.

3.Проинформируйте пациента о точном времени и месте проведения исследования.

4.Попросите пациента повторить ход подготовки к исследованию, особенно в амбулаторных условиях.

5.За три дня до исследования бесшлаковая диета (состав диеты смотри в приложении).

6 По назначению врача – прием ферментов и активированного угля в течение трех дней до исследования, настой ромашки по 1/3стакана три раза в день.

7.Накануне исследования последний прием пищи в 14 – 15 часов.

При этом прием жидкости не ограничивается (можно пить бульон, кисель, компот и так далее). Молочные продукты исключить!

8.Днем накануне исследования прием слабительных – перорально или ректально.

9.В 22 часа нужно сделать две очистительные клизмы по 1,5 – 2 литра. Если после второй клизмы промывные воды окрашены, то сделать еще одну клизму. Температура воды должна быть не выше 20 – 22 0 С (комнатной температуры, при вливании вода должна ощущаться как прохладная).

10.Утром в день исследования нужно сделать еще две клизмы за 3 часа до ирригоскопии (при наличии грязных промывных вод клизмы повторять, добиваясь чистых промывных вод).

11.Пациенту необходимо иметь при себе: направление, амбулаторную карту/историю болезни, данные предыдущей колоноскопии, ирригоскопии, если проводилась.

12.Пациентам старше 30 лет иметь при себе ЭКГ не более, чем недельной давности.

13.Если пациент не может так долго не есть (больные сахарным диабетом и так далее), то утром, в день исследования, можно съесть кусок мяса или другой высокобелковый завтрак.

Возможные проблемы пациента

Настоящие:

1.Невозможность соблюдать диету.

2.Невозможность принять определенное положение.

3.Недостаточная подготовка из-за многосуточного запора, несоблюдения температурного режима воды в клизме, объема воды и количества клизм.

Потенциальные:

1.Риск появления болей из-за спазма кишечника, вызванные самой процедурой и/или подготовкой к ней.

2.Риск нарушение сердечной деятельности и дыхания.

3.Риск получения недостоверных результатов при недостаточной подготовке, невозможности введения контрастной клизмы.

Вариант подготовки без клизм

Метод основан на воздействии осмотически активного вещества на моторику толстой кишки и выведении каловых масс вместе с выпитым раствором.

Последовательность процедуры:

1.Один пакет Фортранса растворить в одном литре кипяченой воды.

2.При данном обследовании для полного очищения кишечника необходимо принять 3 литра водного раствора препарата Фортранс.

3.Если обследование проводится утром, то приготовленный раствор Фортранса принимают накануне исследования по 1 стакану каждые 15 минут (1 литр в час) с 16 до 19 часов. Действие препарата на кишечник продолжается до 21 часа.

4.Накануне вечером до 18 часов можно принять легкий ужин. Жидкость не ограничивается.

Пероральная холецистография

Исследование желчного пузыря и желчевыводящих путей основано на способности печени улавливать и накапливать йодсодержащие контрастные препараты, а затем выделять их с желчью через желчный пузырь и желчевыводящие пути. Это позволяет получить изображение желчных путей. В день исследования в рентгеновском кабинете пациенту дают желчегонный завтрак, через 30-45 минут делают серию снимков

Цели исследования:

1.Оценка расположения и функций желчного пузыря и внепеченочных желчных протоков.

2. Выявление пороков развития и патологических изменений (наличие камней в желчном пузыре, опухоли)

Цели подготовки :

1.Обеспечить возможность проведения исследования.

2.Получить достоверные результаты.

Подготовка :

1.Объясните пациенту суть исследования и правила подготовки к нему.

2.Получите согласие пациента на предстоящее исследование.

3.Проинформируйте пациента о точном времени и месте проведения исследования.

4.Попросите пациента повторить ход подготовки к исследованию, особенно в амбулаторных условиях.

5.Выясните, нет ли аллергии на контрастное вещество.

Накануне:

6.При осмотре обратите внимание на кожу и слизистые, при желтушности – сообщите врачу.

7.Соблюдение бесшлаковой диеты в течение трех дней до исследования

8. По назначению врача – прием ферментов и активированного угля в течение трех дней до исследования.

9.Накануне вечером – легкий ужин не позднее 19 час.

10. За 12 часов до исследования – прием контрастного препарата внутрь в течение 1 часа через равные промежутки времени, запивать сладким чаем. (контрастное вещество рассчитывается на массу тела пациента). Максимальная концентрация препарата в желчном пузыре – через 15-17 часов после его приема.

11.Накануне вечером и за 2 часа до исследования пациенту ставят очистительную клизму

В день исследования:

12.Утром явиться в рентгеновский кабинет натощак; нельзя принимать лекарства, курить.

13. Принести с собой 2 сырых яйца или 200 г сметаны и завтрак (чай, бутерброд).

14. Пациенту необходимо иметь при себе: направление, амбулаторную карту/историю болезни, данные предыдущих исследований этих органов, если они проводилась.

Возможные проблемы пациента

Настоящие:

1.Невозможность проведения процедуры из-за появления желтухи (прямой билирубин сорбирует на себя контрастное вещество).

Потенциальные:

Риск аллергической реакции.

2.Риск развития желчной колики на прием желчегонных средств (сметана, яичные желтки).

Основной методикой рентгенологического исследования, используемой в стоматологической практике, является рентгенография. Рентгеноскопия применяется значительно реже, в основном с целью определения локализации инородных тел, иногда при травматических повреждениях. Однако и в этих случаях просвечивание сочетается с предварительной или последующей рентгенографией.

Анатомические особенности челюстно-лицевой области (строение челюстей, тесное расположение зубов в изогнутых альвеолярных отростках, наличие многокорневых зубов) определяют требования к рентгенограммам. В зависимости от взаимоотношения между пленкой и объектом исследования различают внутриротовые рентгенограммы (пленка введена в полость рта) и внеротовые (пленка располагается снаружи) . Внутриротовые рентгенограммы получают на пленках, завернутых сначала в черную, а сверху в вощаную бумагу для предотвращения воздействия слюны. Для внеротовых рентгенограмм используют кассеты с усиливающими экранами. Применение усиливающих экранов позволяет снизить экспозицию и тем самым лучевую нагрузку на пациента, однако резкость и структурность изображения за счет флюоресцирующего действия экранов хуже, чем на внутриротовых рентгенограммах. Внутриротовые рентгенограммы в зависимости от положения пленки в полости рта подразделяют на контактные (пленка прилежит к исследуемой области) и снимки вприкус (пленка удерживается сомкнутыми зубами и находится на некотором расстоянии от исследуемой области). Наиболее четко структура зубов и окружающих тканей получается на внутрирото-вых контактных рентгенограммах.

Методы рентгенологического исследования делят на основные (внутри- и внеротовая рентгенография) и дополнительные (томография, панорамная томо- и рентгенография, телерентгенография, электрорентгенография, компьютерная томография и др.). Рентгенография позволяет выявить наличие кист, гранулем и ретинированных зубов. Она дает возможность диагностировать доброкачественные и злокачественные опухоли, травматические повреждения зубов и челюстей, наличие инородных тел в челюстно-лицевой области (пули, осколки снаряда, отломки инъекционной иглы, пульпэкстрактора, корневой иглы, бора и др.).

С помощью рентгенографии можно уточнить диагноз апикального или краевого поражения пародонта, дифференцировать хронический периодонтит (фиброзный, грану-лематозный, гранулирующий), установить наличие остеомиелита и других нарушений костной ткани, диагностировать пародонтит или пародонтоз и его стадию в зависимости от степени резорбции стенок лунки зуба и альвеолярного отростка. Рентгенография облегчает диагностику функциональной перегрузки отдельных зубов в связи с травматической артикуляцией или неправильной конструкцией зубных протезов. Рентгенография помогает определить тяжесть процесса при заболеваниях пародонта, степень и характер резорбции альвеол (горизонтальная, вертикальная, воронкообразная резорбция, наличие костных карманов), установить необходимость хирургического или ортопедического лечения - с помощью шин и протезов. Этот метод облегчает выбор конструкции ортопедического аппарата (съемный, несъемный) и опорных зубов.

Внутриротовая контактная рентгенография

Рентгенограммы зубов можно получить на любом рентгенодиагностическом аппарате. Наиболее приспособлены для этих целей специальные дентальные аппараты. Отечественной промышленностью выпускаются аппараты 5Д-1 и 5Д-2. Следует отметить, что получение рентгенограмм зубов и черепно-лицевых костей более сложно, чем других ввиду анатомических особенностей и возможности наслоения костей одна на другую, поэтому при контактных внутрирото-вых снимках рекомендуется направлять тубус рентгеновской трубки под определенным углом для зубов верхней и нижней челюстей, пользуясь правилом изометрии: центральный луч проходит через верхушку корня снимаемого зуба перпендикулярно к биссектрисе угла, образованного длинной осью зуба и поверхностью пленки. Отступление от этого правила приводит к укорочению или удлинению объекта, т.е. изображение зубов получается длиннее или короче самих зубов (рис. 74) .

Чтобы выполнить правила изометрии, необходимо пользоваться определенными углами наклона рентгеновского тубуса при съемке различных участков челюстей. Для съемки отдельных зубов или их групп имеются определенные особенности положения рентгеновской пленки полости рта, наклона рентгеновской трубки, направления центрального луча и места соприкасания вершины тубуса с кожей лица, которые описаны в руководствах по стоматологической рентгенологии.

На рис. 75 представлена схема проекций верхушек корней зубов на коже лица.

Внутриротовая рентгенография вприкус

Рентгенограммы вприкус выполняются в тех случаях, когда невозможно получить внутриротовые контактные снимки (повышенный рвотный рефлекс у детей), при необходимости исследования больших отделов альвеолярного отростка, для оценки состояния щечной и язычной кортикальных пластинок нижней челюсти и дна рта. Пленку размером 5x6 или 6x8 см вводят в полость рта и удерживают сомкнутыми зубами. Рентгенограммы вприкус используют для исследования всех зубов и всех отделов верхней челюсти, передних зубов, передних и боковых участков нижней челюсти.

При рентгенографии соблюдают правила проекции (правило изометрии и касательной). Центральный луч направляют на верхушку зуба перпендикулярно биссектрисе угла, образованного длинной осью зуба и пленкой (табл. 1). Больной сидит в стоматологическом кресле, пленка, расположенная в прикусе, параллельна полу кабинета. Углы наклона трубки приведены в табл. 1.

Внеротовая (экстраоральная) рентгенография

В определенных случаях возникает необходимость в оценке отделов верхней и нижней челюстей, височно-нижнечелюстных суставов, лицевых костей, изображение которых не получается на внутриротовых снимках или они видны лишь частично. На внеротовых снимках изображение зубов и окружающих их образований получается менее структурным. Поэтому такие снимки используются лишь в тех случаях, когда получить внутриротовые рентгенограммы не представляется возможным (повышенный рвотный рефлекс, тризм и т.п.).

Изучение рентгенограмм зубов

Ткани зубов и челюстей обладают различной плотностью и толщиной, поэтому рентгеновы лучи поглощаются в неодинаковой степени. Вследствие этого на рентгенограмме получается изображение, состоящее из различных теней.

На нормальной рентгенограмме зубов (рис. 76) видны:

  • тень эмалевого покрова коронки - 1;
  • тень дентина коронки - 2;
  • просветление, соответствующее полости зуба - 3;
  • просветление, соответствующее корневому каналу - 4;
  • тень корня зуба, состоящая из тени дентина и неразличимой от нее тени цемента - 5;
  • просветление, соответствующее боковым отделам периодонтального пространства - 6;
  • плотная полоска кортикального слоя стенок лунки - 7;
  • изображение межзубной перегородки - 8.

Губчатая костная ткань альвеолярных отростков челюстей представляется на снимках густым переплетом перекрещивающихся по всем направлениям плотных костных бало-чек и мелких светлых пространств, заполненных костномозговым веществом. На рентгенограмме верхней челюсти определяется мелкопетлистый рисунок, для нижней челюсти характерно крупнопетлистое строение с преимущественно горизонтальным расположением костных балочек. При оценке рентгенограмм верхней челюсти необходимо учитывать анатомические ее особенности, в частности наличие воздухоносных пазух.

Проводить разбор каждой рентгенограммы следует по следующей схеме:

1) определение качества рентгенограммы и целесообразность ее использования; снимок должен быть контрастный, четкий, структурный, без проекционных искажений;

2) определение на снимке верхней или нижней челюсти. Для верхней челюсти в норме характерными рентгеновскими признаками являются проекция дна полостей (гайморовой, носовой) и мелкопетлистый рисунок губчатой кости, а для нижней челюсти - отсутствие проекции полостей и крупнопетлистый рисунок кости;

3) определение переднего или бокового отдела челюстей по форме коронок зубов и анатомическим образованиям данного отдела в их рентгеновском изображении (особенно при отсутствии зубов). На внутриротовых рентгенограммах верхней челюсти в переднем отделе, как правило, проецируется 7 основных анатомических образований, дно носовой полости, носовая перегородка, нижние носовые раковины, нижние носовые ходы, передняя носовая ость, межчелюстной шов и резцовое отверстие (последнее - не всегда), а в боковом отделе 3 основных образования: дно гайморовой полости, дно носовой полости, скуловая кость и за третьим моляром (если получают рентгенограмму восьмых зубов) дополнительно 4 образования: верхнечелюстной бугор, наружная пластинка крыловидного отростка, крючок крыловидного отростка и венечный отросток нижней челюсти. На рентгенограммах нижней челюсти в переднем отделе проецируется только подбородочный бугор и в боковом отделе 3 образования: подбородочное отверстие, нижнечелюстной канал и наружная косая линия;

4) детальный разбор каждого зуба в отдельности:

  • оценка коронки: величина, форма, контуры, интенсивность твердых тканей;
  • полость зуба: наличие, отсутствие, форма, величина, структура; корень зуба: число, величина, форма, контуры;
  • корневой канал: наличие, отсутствие, ширина, при наличии пломбировочного материала - степень заполнения;
  • периодонтальная щель: ширина, равномерность;
  • компактная пластинка альвеолы: наличие, отсутствие, ширина;
  • нарушение целостности;
  • окружающая костная ткань: остеопороз, деструкция, остеосклероз;
  • межальвеолярные перегородки: расположение, форма верхушки, сохранность замыкательной компактной пластины, структура;

5) определение патологии в области верхушечного и краевого пародонта;

6) определение патологии в костной ткани челюстей.

Однако трудно получить два идентичных снимка одного и того же объекта, снятых в разное время; малейшее отклонение проекции центрального луча на пленку дает другую картину рентгеновского изображения, что может приводить к неправильному толкованию результатов лечебных мероприятий. Имеются специальные приборы и приемы для получения идентичных снимков зубов верхней и нижней челюстей в одной и той же проекции.

Томография

Томография - послойное исследование - дополнительный метод, позволяющий получить изображение определенного слоя изучаемой области, избежав суперпозиций теней, затрудняющих трактовку рентгенограмм. Используются специальные аппараты-томографы или томографические приставки. Во время проведения томографии пациент неподвижен, рентгеновская трубка и кассета с пленкой перемещаются в противоположных направлениях. С помощью томографии можно получить рентгеновское изображение определенного слоя кости на нужной глубине. Этот метод особенно ценен для изучения различной патологии височно-челюстного сочленения, нижней челюсти в области ее углов (по поводу травмы, опухоли и др.).

Томограммы можно получать в трех проекциях: сагиттальной, фронтальной и аксиальной. Снимки делают послойно с «шагом» 0,5-1 см. Чем больше угол, тем больше размазывание и тоньше выделяемый слой. При угле качания 20° толщина исследуемого слоя составляет 8 мм, при 30°, 45° и 60° - соответственно 5,3 мм, 3,5 мм и 2,5 мм.

Томография применяется в основном для уточнения патологии верхней челюсти и височно-нижнечелюстного сустава. Метод позволяет оценить взаимоотношение патологического процесса с верхнечелюстной пазухой, дном полости носа, крыловидно-небной и подвисочной ямками, состояние стенок верхнечелюстной пазухи, клеток решетчатого лабиринта, детализировать структуру патологического образования.

Послойное исследование с малым углом качания (8-10°) - зонография. При этом изображение исследуемой области получается более четким и контрастным. Зонография на глубине 4-5 см в лобно-носовой проекции в вертикальном положении больного является методом выбора для выявления выпота и оценки состояния слизистой оболочки верхнечелюстной пазухи. Толщина среза по расчетам составляет 30 мм. Для исследования височно-нижнечелюстного сустава выполняются боковые томограммы в положении с открытым и закрытым ртом. Больной лежит на животе, голова повернута и исследуемый сустав прилегает к деке стола. Сагиттальная плоскость черепа должна быть параллельна плоскости стола. Томограмма проводится на глубине 2-2,5 см.

Схема измерения параметров височно-нижнечелюстного сустава представлена на рис. 77.

Ширина суставной ямки у основания по - линии АВ, соединяющей нижний край слухового прохода с вершиной суставного бугорка; ширина суставной ямки - по линии СД, проведенной на уровне вершины нижнечелюстной головки параллельно линии АВ; глубина суставной ямки - по перпендикуляру K.L, проведенному от ее самой глубокой точки к линии АВ, высота нижнечелюстной головки (степень погружения) - по перпендикуляру КМ, восстановленному от самой высокой точки вершины головки к линии АВ (почти всегда совпадаете KL); ширина нижнечелюстной головки - A 1 B 1 ; ширина суставной щели у основания спереди - АА 1 и сзади - В 1 В, а также под углом 45° к линии АВ из точки К в переднем отделе (отрезок а), в заднем (отрезок с) и в верхнем (отрезок b); угол степени наклона заднего ската суставного бугорка к линии АВ (угол а).

Современные панорамные томографы имеют отдельные программы для выполнения обычных ортопантомограмм, зонограмм височно-нижнечелюстных суставов, верхнечелюстных пазух, средней трети лица, атлантоокципитального сочленения, орбит с отверстиями зрительных нервов, лицевого черепа в боковой проекции.

Увеличенная панорамная рентгенография

При проведении увеличенной панорамной рентгенографии анод острофокусной трубки (диаметр фокусного пятна 0,1 мм) вводят в полость рта обследуемого, а рентгеновскую пленку в полиэтиленовой кассете размером 12x25 см с усиливающими экранами помещают снаружи. Больной сидит в стоматологическом кресле, среднесагиттальная плоскость перпендикулярна полу, окклюзионная плоскость исследуемой челюсти параллельна полу. Трубку вводят в полость рта по средней линии лица до уровня вторых моляров (на глубину 5-6 см). Рентгеновскую пленку прижимает к лицу сам исследуемый, отдельно к верхней и нижней челюсти, и в этом положении производят съемку. Данным методом можно получить полную картину всех зубов в виде панорамного снимка с большой резкостью и увеличением в 2 раза, причем по сравнению с обычными снимками облучение больного меньше в 25 раз.

Электрорентгенография

Дефицитность дорогостоящего серебра - составной части фотографической эмульсии -диктует необходимость поисков материалов для рентгенографии, не содержащих его. В результате разработан и внедрен в практику метод электрорентгенографии (ксерорентгенографии). В основе метода лежит снятие электростатического заряда с поверхности пластины, покрытой селеном, с последующим напылением цветного порошка и переносом изображения на бумагу. Для проведения метода разработан специальный электрорентгенографический аппарат ЭРГА, состоящий из двух блоков: блока зарядки и блока проявления рентгеновского изображения.

Телерентгенологическое исследование в стоматологической практике

Под термином «телерентгенография» понимают выполнение исследования при большом фокусном расстоянии, обеспечивающем минимальное искажение размеров исследуемого органа. Полученные таким путем снимки используются для проведения сложных антропометрических измерений, позволяющих оценить взаимоотношение различных отделов лицевого черепа в норме и при патологических состояниях. Методика применяется для диагностики различных аномалий прикуса и оценки эффективности проводимых ортодонтических мероприятий. Телерентгенограммы выполняются на кассете с усиливающими экранами размером 24x30 см, расстояние фокус - пленка 1,5-2,0 м. При исследовании необходимо пользоваться краниостатом, обеспечивающим фиксацию положения больного, получение идентичных рентгенограмм.

Сложности строения черепа требуют выполнения рентгенограмм в двух взаимно перпендикулярных проекциях - прямой и боковой. В практической работе в большинстве случаев используется лишь телерентгенография в боковой проекции. Определение на телерентгенограмме размеров различных линий, проведенных между определенными антропометрическими точками, и величины углов между ними дает возможность математически охарактеризовать особенности роста и развития различных отделов черепа у конкретного пациента. Более подробно об этом изложено в главе «Ортодонтия».

Компьютерная томография

Разработка и внедрение в клиническую практику рентгеновской компьютерной томографии (КТ) явились крупнейшим достижением науки и техники. Метод позволяет выявить положение, форму, размеры и строение различных органов, определить их топографо-анатомические взаимоотношения с рядом расположенными органами и тканями.

В основе метода лежит математическая реконструкция рентгеновского изображения. Принцип метода заключается втом, что после прохождения рентгеновских лучей через тело пациента они регистрируются чувствительными детекторами. Сигналы с детектора поступают в вычислительную машину (компьютер). Быстродействующая электронно-вычислительная машина перерабатывает полученную информацию по определенной программе. Машина пространственно определяет расположение участков, по-разному поглощающих рентгеновские лучи. В результате на экране телевизионного устройства - дисплея - воссоздается синтетическое изображение исследуемой области. Полученное изображение не является прямой рентгенограммой или томограммой, а представляет собой синтезированный образ, составленный компьютером на основании анализа степени поглощения тканями рентгеновского излучения в определенных точках. Толщина срезов КТ колеблется от 2 до 8 мм.

Метод расширяет диагностические возможности в распознавании травматических повреждений, воспалительных и опухолевых заболеваний, в первую очередь верхней челюсти. При рентгенологическом исследовании этого отдела, как известно, встречаются значительные затруднения. На КТ может быть виден хрящевой диск височно-нижнече-люстного сустава, особенно при его смещении кпереди.

Рентгенография с использованием контрастных веществ

Методика сиалографии при исследовании протоков крупных слюнных желез заключается в заполнении их йодсодержащими препаратами. Исследование проводится для диагностики преимущественно воспалительных заболеваний слюнных желез и слюннокаменной болезни. Ангиография - метод контрастного рентгенологического исследования сосудистой системы артерий (артериография) и вен (венография).

14645 0

Важной составной частью функционального анализа зубов, челюстей и ВНЧС является рентгенография. К рентгенологическим методам исследования относятся внутриротовая дентальная рентгенография, а также ряд методов внеротовой рентгенографии: панорамная рентгенография, ортопантомография, томография ВНЧС и телерентгенография.

На панорамной рентгенограмме видно изображение одной челюсти, на ортопантомограмме — обеих челюстей.

Телерентгенографию (рентгенография на расстоянии) применяют для изучения строения лицевого скелета. При рентгенографии ВНЧС используют методы Парма, Шюллера, а также томографию. Обзорные рентгенограммы малопригодны для функционального анализа: на них не видна суставная щель на всем протяжении, имеются проекционные искажения, наложения окружающих костных тканей.

Томография височно-нижнечелюстного сустава

Несомненные преимущества перед вышеназванными методами имеет томография (сагиттальная, фронтальная и аксиальная проекции), позволяющая видеть суставную щель, форму суставных поверхностей. Однако томография является срезом в одной плоскости и при этом исследовании невозможно оценить в целом положение и форму наружного и внутреннего полюсов головок ВНЧС.

Нечеткость суставных поверхностей на томограммах обусловлена наличием тени смазанных слоев. В области латерального полюса - это массив скуловой дуги, в области медиального полюса - каменистая часть височной кости. Томограмма бывает более четкой, если имеется срез в середине головки, а наибольшие изменения при патологии наблюдаются у полюсов головок.
На томограммах в сагиттальной проекции мы видим комбинацию смещения головок в вертикальной, горизонтальной и сагиттальной плоскостях. Например сужение суставной щели, обнаруживаемое на сагиттальной томограмме, может быть в результате смещения головки наружу, а не вверх, как принято считать; расширение суставной щели - смещение головки внутрь (медиально), а не только вниз (рис. 3.29, а).

Рис. 3.29. Сагиттальные томограммы ВНЧС и схема для их оценки. А - топография элементов ВНЧС справа (а) и слева (б) при смыкании челюстей в положении центральной (1), правой боковой (2) окклюзии и при открытом рте (3) в норме. Видна щель между костными элементами сустава - место для суставного диска; Б - схема для анализа сагиттальных томограмм: а - угол наклона заднего ската суставного бугорка к основной линии; 1 - переднесуставная щель; 2 - верхнесуставная щель; 3 - заднесустав-ная щель; 4 - высота суставного бугорка.

Расширение суставной щели на одной стороне и сужение ее на другой считают признаком смещения нижней челюсти в сторону, где суставная щель уже .

Внутренние и наружные отделы сустава определяются на фронтальных томограммах. Ввиду асимметрии расположения ВНЧС в пространстве лицевого черепа справа и слева на одной фронтальной томограмме не всегда удается получить изображение сустава с обеих сторон. Томограммы в аксиальной проекции применяют редко из-за сложной укладки пациента. В зависимости от задач исследования применяют томографию элементов ВНЧС в боковых проекциях в следующих положениях нижней челюсти: при максимальном смыкании челюстей; при максимальном открывании рта; в положении физиологического покоя нижней челюсти; в «привычной окклюзии».

При томографии в боковой проекции на томографе «Неодиагно-макс» укладывают больного на снимочный стол на живот, голову поворачивают в профиль таким образом, чтобы исследуемый сустав прилегал к кассете с пленкой. Сагиттальная плоскость черепа должна быть параллельна плоскости стола. При этом чаще всего используют глубину среза 2,5 см.

На томограммах ВНЧС в сагиттальной проекции при смыкании челюстей в положении центральной окклюзии в норме суставные головки занимают центрическое положение в суставных ямках. Контуры суставных поверхностей не изменены. Суставная щель в переднем, верхнем и заднем отделах симметрична справа и слева.

Средние размеры суставной щели (мм):

В переднем отделе - 2,2±0,5;
в верхнем отделе - 3,5±0,4;
в заднем отделе - 3,7+0,3.

На томограммах ВНЧС в сагиттальной проекции при открытом рте суставные головки располагаются против нижней трети суставных ямок или против вершин суставных бугров.

Для создания параллельности сагиттальной плоскости головы и плоскости стола томографа, неподвижности головы во время томографии и сохранения этого же положения при повторных исследованиях используют краниостат.

На томограммах в боковой проекции измеряют ширину отдельных участков суставной щели по методике И.И. Ужумецкене (рис. 3.29, б): оценивают размеры и симметричность суставных головок, высоту и наклон заднего ската суставных бугорков, амплитуду смещения суставных головок при переходе из положения центральной окклюзии в положение открытого рта.
Особый интерес представляет метод рентгенокинематографии ВНЧС. С помощью этого метода возможно изучение движения суставных головок в динамике [Петросов Ю.А., 1982].

Компьютерная томография

Компьютерная томография (КТ) позволяет получать прижизненные изображения тканевых структур на основании изучения степени поглощения рентгеновского излучения в исследуемой области. Принцип метода заключается в том, что исследуемый объект послойно просвечивается рентгеновским лучом в различных направлениях при движении рентгеновской трубки вокруг него. Непоглощенная часть излучения регистрируется с помощью специальных детекторов, сигналы от которых поступают в вычислительную систему (ЭВМ). После математической обработки полученных сигналов на ЭВМ строится изображение исследуемого слоя («среза») на матрице.

Высокая чувствительность метода КТ к изменениям рентгеновской плотности изучаемых тканей обусловлена тем, что получаемое изображение в отличие от обычного рентгеновского не искажается наложением изображений других структур, через которые проходит рентгеновский пучок. В то же время лучевая нагрузка на больного при КТ-исследовании ВНЧС не превышает таковую при обычной рентгенографии. По данным литературы, использование КТ и сочетание ее с другими дополнительными методами позволяют осуществить наиболее прецизионную диагностику, снизить лучевую нагрузку и решать те вопросы, которые решаются с трудом или совсем не решаются с помощью послойной рентгенографии.

Оценку степени поглощения излучения (рентгеновской плотности тканей) производят по относительной шкале коэффициентов поглощения (КП) рентгеновского излучения. В данной шкале за 0 ед. Н (Н - единица Хаунсфилда) принято поглощение в воде, за 1000 ед. Н. - в воздухе. Современные томографы позволяют улавливать различия плотностей в 4-5 ед. Н. На компьютерных томограммах более плотные участки, имеющие высокие значения КП, представляются светлыми, а менее плотные, имеющие низкие значения КП, темными.

С помощью современных компьютерных томографов III и IV поколений можно выделить слои толщиной 1,5 мм с моментальным воспроизведением изображения в черно-белом или цветном варианте, а также получить трехмерное реконструированное изображение исследуемой области. Метод позволяет бесконечно долго сохранять полученные томограммы на магнитных носителях и в любое время повторить их анализ посредством традиционных программ, заложенных в ЭВМ компьютерного томографа.

Преимущества КТ в диагностике патологии ВНЧС:

Полное воссоздание формы костных суставных поверхностей во всех плоскостях на основе аксиальных проекций (реконструктивное изображение);
обеспечение идентичности съемки ВНЧС справа и слева;
отсутствие наложений и проекционных искажений;
возможность изучения суставного диска и жевательных мышц;
воспроизведение изображения в любое время;
возможность измерения толщины суставных тканей и мышц и оценки ее с двух сторон.

Применение КТ для исследования ВНЧС и жевательных мышц впервые разработано в 1981 г. A.Hiils в диссертации, посвященной клинико-рентгенологическим исследованиям при функциональных нарушениях зубочелюстно-лицевой системы.

Основные показания к использованию КТ: переломы суставного отростка, краниофациальные врожденные аномалии, боковые смещения нижней челюсти, дегенеративные и воспалительные заболевания ВНЧС, опухоли ВНЧС, упорные суставные боли неясного генеза, неподдающиеся консервативной терапии.

КТ позволяет полностью воссоздать формы костных суставных поверхностей во всех плоскостях, не вызывает наложения изображений других структур и проекционных искажений [Хватова В.А., Корниенко В.И., 1991; Паутов И.Ю., 1995; Хватова В.А., 1996; Вязьмин А.Я., 1999; Westesson P., Brooks S., 1992, и др.]. Применение этого метода эффективно как для диагностики, так и дифференциальной диагностики органических изменений ВНЧС, не диагностируемых клинически. Решающее значение при этом имеет возможность оценки суставной головки в нескольких проекциях (прямые и реконструктивные срезы).

При дисфункции ВНЧС КТ-исследование в аксиальной проекции дает дополнительную информацию о состоянии костных тканей, положении продольных осей суставных головок, выявляет гипертрофию жевательных мышц (рис. 3.30).

КТ в сагиттальной проекции позволяет дифференцировать дисфункцию ВНЧС от других поражений сустава: травм, новообразований, воспалительных нарушений [Регtes R., Gross Sh., 1995, и др.].

На рис. 3.31 представлены КТ ВНЧС в сагиттальной проекции справа и слева и схемы к ним. Визуализировано нормальное положение суставных дисков.

Приводим пример использования КТ для диагностики заболевания ВНЧС.

Больная М ., 22 лет, обратилась с жалобами на боль и суставные щелчки справа при жевании в течение 6 лет. Во время обследования выявлено: при открывании рта нижняя челюсть смещается вправо, а затем зигзагообразно со щелчком влево, болезненная пальпация наружной крыловидной мышцы слева. Прикус ортогнатический с небольшим резцовым перекрытием, интактные зубные ряды, жевательные зубы справа стерты больше, чем слева; правосторонний тип жевания. При анализе функциональной окклюзии в полости рта и на моделях челюстей, установленных в артикулятор, выявлен балансирующий суперконтакт на дистальных скатах небного бугорка верхнего первого моляра (задержка стирания) и щечного бугорка второго нижнего моляра справа. На томограмме в сагиттальной проекции изменений не обнаружено. На КТ ВНЧС в той же проекции в положении центральной окклюзии смещение правой суставной головки назад, сужение заднесуставной щели, смещение вперед и деформация суставного диска (рис. 3.32, а). На КТ ВНЧС в аксиальной проекции толщина наружной крыловидной мышцы справа 13,8 мм, слева - 16,4 мм (рис. 3.32, б).

Диагноз: балансирующий суперконтакт небного бугорка 16 и щечного бугорка в левой боковой окклюзии,правосторонний тип жевания, гипертрофия наружной крыловидной мышцы слева, асимметрия размеров и положения суставных головок, мышечно-суставная дисфункция, дислокация кпереди диска ВНЧС справа, смещение суставной головки кзади.

Телерентгенография

Использование телерентгенографии в стоматологии позволило получать снимки с четкими контурами мягких и твердых структур лицевого скелета, проводить их метрический анализ и тем самым уточнять диагноз [Ужумецкене И.И., 1970; Трезубов В.Н., Фадеев Р.А., 1999, и др.].

Принцип метода заключается в получении рентгеновского снимка при большом фокусном расстоянии (1,5 м). При получении снимка с такого расстояния, с одной стороны, снижается лучевая нагрузка на пациента, с другой, уменьшается искажение лицевых структур. Применение цефалоста-тов обеспечивает получение идентичных снимков при повторных исследованиях.

Телерентгенограмма (ТРГ) в прямой проекции позволяет диагностировать аномалии зубочелюстной системы в трансверсальном направлении, в боковой проекции - в сагиттальном направлении. На ТРГ отображаются кости лицевого и мозгового черепа, контуры мягких тканей, что дает возможность изучить их соответствие. ТРГ используют как важный диагностический метод в ортодонтии, ортопедической стоматологии, челюстно-лице-вой ортопедии, ортогнатической хирургии. Применение ТРГ позволяет:
проводить диагностику различных заболеваний, в том числе аномалий и деформаций лицевого скелета;
планировать лечение этих заболеваний;
прогнозировать предполагаемые результаты лечения;
осуществлять контроль за ходом лечения;
объективно оценивать отдаленные результаты.

Так, при протезировании больных с деформациями окклюзионной поверхности зубных рядов использование ТРГ в боковой проекции дает возможность определить искомую протетическую плоскость, а следовательно, решить вопрос о степени сошлифовывания твердых тканей зубов и необходимости их девитализации.

При полном отсутствии зубов на телерентгенограмме можно на этапе постановки зубов проверить правильность нахождения окклюзионной поверхности.

Рентгеноцефалометрический анализ лица у пациентов с повышенной стираемостью зубов позволяет более точно дифференцировать форму данного заболевания, выбрать оптимальную тактику ортопедического лечения. Кроме того, оценив ТРГ, можно также получить информацию о степени атрофии альвеолярных частей верхней и нижней челюстей и определить конструкцию протеза.
Для расшифровки ТРГ снимок закрепляют на экране негатоскопа, прикрепляют к нему кальку, на которую переносят изображение.

Существует много методов анализа ТРГ в боковых проекциях. Одним из них является метод Шварца, основанный на использовании в качестве ориентира плоскости основания черепа. При этом можно определить:

Расположение челюстей по отношению к плоскости передней части основания черепа;
расположение ВНЧС по отношению к этой плоскости;
длину переднего основания че
репной ямки.

Анализ ТРГ - важный метод диагностики зубочелюстных аномалий, позволяющий выявить причины их формирования.

С помощью компьютерных средств можно не только повысить точность анализа ТРГ, сэкономить время их расшифровки, но и прогнозировать предполагаемые результаты лечения.

В.А.Хватова
Клиническая гнатология

Физические основы и методы рентгеновских исследований

1. Источники рентгеновского излучения

Рентгеновское излучение было открыто немецким физиком Рентгеном в 1895 году. Сам Рентген назвал его Х-лучами. Оно возникает при торможении веществом быстрых электронов. Рентгеновское излучение получают с помощью специальных электронно-вакуумных приборов – рентгеновских трубок.

В стеклянной колбе, давление в которой равно 10 -6 мм рт.ст., находятся анод и катод. Анод выполнен из меди с вольфрамовой насадкой. Анодное напряжение рентгеновских трубок составляет 80 – 120 кВ. Электроны, вылетевшие из катода, разгоняются электрическим полем и тормозятся на вольфрамовой насадке анода, которая имеет скос под углом 11–15 о . Рентгеновское излучение выходит из колбы через специальное кварцевое окно.

Важнейшими параметрами рентгеновского излучения являются длина волны и интенсивность. Если предположить, что торможение электрона на аноде происходит мгновенно, то вся его кинетическая энергия е U a переходит в излучение:

. (1)

В действительности торможение электрона занимает конечное время, и частота излучения, определяемая из уравнения (1), является максимально возможной:

. (2)

С учетом (с – скорость света) находим минимальную длину волны

. (3)

Подставляя величины h , c , e в формулу (3) и выражая анодное напряжение в киловольтах, получим длину волны в нанометрах:

=. (4)

Например, при анодном напряжении 100 кВ длина волны рентгеновского излучения будет равна 0,012 нм, т.е. примерно в 40000 раз короче средней длины волны оптического диапазона.

Теоретическое распределение энергии тормозного излучения по частоте выведено Крамером и экспериментально получено Куленкампфом. Спектральная плотность I непрер ы вного спектра рентгеновского излучения при анодном токе i a c анода, вещество которого имеет порядковый номер Z , выражается соотношением

.

Составляющая BZ не зависит от частоты и на называется характеристическим излучением. Обычно ее доля пренебрежимо мала, поэтому будем считать

. (5)

Распределение интенсивностей по длинам волн можно получить из равенства

Где .

Используя формулу (5), с учетом и находим

. (6)

Интенсивность тормозного излучения найдем, используя формулу (5)

или, с учетом соотношения (2),

Где . (7)

Таким образом, интенсивность рентгеновского излучения пропорциональна анодному току, квадрату анодного напряжения и атомному номеру вещества анода.

Место падения электронов на анод называется фокусом. Его диаметр составляет несколько миллиметров, а температура в нем достигает 1900 о С. Отсюда понятен выбор вольфрама в качестве материала для насадки: он имеет большой атомный номер (74) и высокую температуру плавления (3400 о С). Напомним, что атомный номер меди равен 29, а температура плавления «всего» 1700 о С.

Из формулы (7) следует, что интенсивность рентгеновского излучения можно регулировать, изменяя ток анода (ток накала катода) и анодное напряжение. Однако во втором случае кроме интенсивности излучения будет меняться и его спектральный состав. Формула (6) показывает, что спектральная интенсивность является сложной функцией длины волны. Она начинается из нуля при , достигает максимума при 1,5 и затем асимптотически стремится к нулю. Составляющие рентгеновского излучения с длинами волн, близкими к называют жестким излучением, а имеющие длины волн, намного большие – мягким излучением.

Анод простейшей рентгеновской трубки охлаждается конвекционно, и поэтому такие трубки имеют небольшую мощность. Для ее повышения применяют активное охлаждение маслом. Анод трубки делают полым и подают в него масло под давлением 3 – 4 атм. Этот способ охлаждения не очень удобен, так как требует дополнительно громоздкого оборудования: насос, шланги и др.

При больших мощностях трубок наиболее эффективным способом охлаждения является применение вращающегося анода. Анод выполнен в виде усеченного конуса, образующая которого составляет с основанием угол 11–15 о . Боковая поверхность анода армирована вольфрамом. Анод вращается на стержне, соединенном с металлическим стаканом, к которому

подводится анодное напряжение. На колбу надевается трехфазная обмотка, являющаяся статором. Обмотка статора питается током промышленной или повышенной частоты, например 150 Гц. Статор создает вращающееся магнитное поле, которое увлекает за собой ротор. Частота вращения анода достигает 9000 об/мин. При вращении анода фокус перемещается по его поверхности. В силу тепловой инерции площадь теплоотдачи увеличивается во много раз по сравнению с неподвижным анодом. Она равна 2r  D ф, где D ф – диаметр фокусного пятна, а r – его радиус вращения. Трубки с вращающимся анодом допускают очень большие нагрузки. В современных трубках обычно два фокуса и соответственно две спирали накала.

В табл. 1 приведены параметры некоторых медицинских рентгеновских трубок.

Таблица 1. Параметры рентгеновских трубок

Тип трубки

Анодное напряжение, кВ

Номинальная мощность за 1 с, кВт

С неподвижным анодом

0,2БД-7–50 50 0,2 5Д1

3БД-2–100 100 3,0 РУМ

С вращающимся анодом

10 БД-1–110 110 10,0 Фл 11Ф1

8–16 БД-2–145 145 8,0; 16,0 РУМ-10

14–30 БД-9–150 150 14,0; 30,0 РУМ-20

2. Виды рентгеновских исследований

Большинство рентгеновских исследований основано на преобразовании рентгеновского излучения, прошедшего через ткани человека. При прохождении рентгеновских лучей через вещество часть лучистой энергии в нем задерживается. При этом происходит не только количественное изменение – ослабление интенсивности, но и качественное – изменение спектрального состава: более мягкие лучи задерживаются сильнее и излучение на выходе становится в целом более жестким.

Ослабление рентгеновского излучения происходит за счет поглощения и рассеивания. При поглощении рентгеновские кванты выбивают электроны из атомов вещества, т.е. ионизируют его, в чем и проявляется вредное воздействие рентгеновского излучения на живые ткани. Спектральный коэффициент поглощения пропорционален . Таким образом, мягкие лучи поглощаются значительно сильнее, чем жесткие (и, как на первый взгляд ни странно, приносят больше вреда). Ослабление за счет рассеяния в основном сказывается при очень коротких волнах, которые в медицинской рентгенологии не используются.

Установлено, что если относительный коэффициент поглощения рентгеновского излучения воды (для излучения средней жесткости) принять равным единице, то для воздуха он составит 0,01; для жировой ткани – 0,5; углекислого кальция – 15,0; фосфорнокислого кальция – 22,0. Другими словами, в наибольшей степени рентгеновские лучи поглощаются костями, в значительно меньшей степени мягкими тканями и меньше всего тканями, содержащими воздух.

Преобразователи рентгеновского излучения обычно имеют большую активную площадь, на точки которой воздействуют отдельные лучи, прошедшие по определенным направлениям через объект. При этом они испытывают разное затухание, зависящее от свойств тканей и сред, встречающихся на направлении луча. Наиболее важным параметром для визуализации рентгеновских изображений является линейный коэффициент ослабления . Он показывает, во сколько раз уменьшается интенсивность рентгеновского излучения на очень маленьком отрезке пути луча, на котором ткань или среду можно считать однородной.

I B = I 0 exp(-).

Коэффициент линейного затухания  меняется вдоль пути луча и общее затухание определяется поглощением всеми тканями, встречающимися на нем.

Энергетическая зависимость коэффициента ослабления рентгеновского излучения – с ростом энергии он уменьшается – приводит и к его зависимости от расстояния, пройденного лучом. Действительно, по мере движения луча отсеиваются его более мягкие компоненты и остаются все более жесткие, которые поглощаются меньше. Эта специфическая особенность не создает каких-либо проблем для обычных рентгеновских исследований, однако имеет большое значение в рентгеновской компьютерной томографии.

В связи с изменением спектрального состава рентгеновского излучения, прошедшего через вещество, усложняется и зависимость интенсивности I П прошедшего излучения от анодного напряжения

где n = 2–6.

Одним из самых распространенных видов рентгеновских исследований до сих пор остается рентгенография – получение рентгеновских снимков на специальной рентгеновской пленке.

Излучение от рентгеновского источника вначале проходит через фильтр – тонкий лист из алюминия или меди, который отсеивает мягкие составляющие. Для диагностики они не имеют большого значения, а пациенту несут дополнительную лучевую нагрузку и могут вызвать рентгеновский ожог. Пройдя через объект, рентгеновское излучение попадает на приемник, который имеет вид кассеты. В ней размещены рентгеновская пленка и усилительный экран. Экран представляет собой плотный лист картона. Его сторона, обращенная к пленке, покрыта люминесцирующим слоем, например, вольфрамата кальция CaWO 4 или ZnS  CdS  Ag , способным светиться под действием рентгеновских лучей. Оптическое излучение засвечивает эмульсионный слой рентгеновской пленки и вызывает реакцию в соединениях серебра. Между интенсивностями излучений обоих видов сохраняется пропорциональность, поэтому участки объекта, соответствующие более сильному поглощению рентгеновского излучения (например, костные ткани), на снимке выглядят более светлыми.

На ранней стадии развития рентгеновской техники применялась прямая съемка – без усилительного экрана. Однако ввиду малой толщины эмульсионного слоя в нем задерживалась очень небольшая часть общей энергии излучения, и для получения качественного снимка приходилось использовать большое время съемки. Это приводило к значительным лучевым нагрузкам на пациентов и обслуживающий персонал. Первым результаты этого воздействия ощутил на себе сам Рентген.

Различают излученную и поглощенную дозы рентгеновского излучения. Обе они могут выражаться в рентгенах. В медицинской радиологии для оценки поглощенной дозы используют специальную единицу – Зиверт (Зв): 13 в эквивалентен примерно 84 Р. В отличие от излученной дозы поглощенная доза не может быть точно измерена. Она определяется расчетным путем или с помощью моделей (фантомов). Поглощенная доза характеризует степень облучения человека и, следовательно, вредного воздействия на организм. Во время одного рентгеновского снимка пациент получает от 0,5 до 5 мР.

Качество снимка (контрастность) зависит от выдержки и экспозиции. Экспозицией называется произведение интенсивности РИ на выдержку: H = It . Снимок одинакового качества можно получить при одинаковой экспозиции, т.е. при большой интенсивности и малой выдержке или при малой интенсивности и большой выдержке. Так как экспозиция представляет собой энергию, то она определяет и поглощенную дозу облучения.

Выше уже отмечался один из существенных недостатков рентгенографии – большой расход серебра (5–10 г. на 1 м 2 пленки). Поэтому ведется интенсивная разработка методов и средств для «беспленочных» рентгеновских исследований. Одним из таких путей является электрорентгенография. Рентгенологическое исследование проводят так же, как и при рентгенографии, только вместо кассеты с пленкой и усилительным экраном используют кассету с полупроводниковой (селеновой) пластиной. Пластину предварительно заряжают в специальном устройстве с однородным электрическим полем. Под действием рентгеновского облучения сопротивление полупроводникового слоя уменьшается, и пластина частично теряет свой заряд. На пластине создается скрытое электростатическое изображение, отражающее структуру снимаемого объекта. В дальнейшем это изображение с помощью графитового порошка переносится на плотную бумагу и закрепляется. Пластину очищают от остатков порошка и используют повторно. Метод электрорентгенографии отличается простотой и невысокой стоимостью материалов, однако он уступает по чувствительности в 1,5–2 раза обычной рентгенографии. Поэтому главной областью ее применения являются ургентные исследования – травматология конечностей, таза и других костных образований.

Быстро развивается другая важная отрасль рентгенодиагностики – ретгеноскопия. До сравнительно недавних пор (60-е годы ХХ столетия) применялась прямая рентгеноскопия. Рентгеновское излучение, прошедшее через объект, попадало на люминесцирующий экран – металлический лист, покрытый слоем ZnS или CdS . Врач располагался позади экрана и наблюдал оптическое изображение. Для получения изображения достаточной яркости приходилось увеличивать интенсивность излучения. При этом и пациент, и врач (несмотря на защитные меры) подвергались сильному облучению. И все же яркость изображения оставалась небольшой, и наблюдение приходилось производить в затемненном помещении. В дальнейшем рентгеноскопия из своего первоначального вида разветвилась на два направления – флюорографию и рентгеновские телевизионные системы.

Флюорография является самым распространенным рентгенологическим исследованием и предназначена прежде всего для массовой диагностики туберкулеза.

Рентгеновское излучение, прошедшее через объект, попадает на люминесцирующий экран, на котором возникает оптическое изображение. Световое излучение фокусируется и концентрируется оптической системой и засвечивает рулонную пленку, на которой получаются снимки размером 100100 или 7070. Качество флюорографических снимков несколько хуже рентгенографических, а доза облучения, получаемая при этом исследовании, достигает 5 мР. На флюорограммы ежегодно расходуются десятки млн. метров пленки.

Существенно уменьшить лучевую нагрузку на пациента и улучшить качество снимка позволяет применение преобразователей рентгеновского излучения в оптическое – рентгеновских электронно-оптических преобразователей (РЭОП), устройство и принцип действия которых будут рассмотрены в разделе «Рентгеновские телевизионные системы».

Для того чтобы получить дифференцированное изображение тканей, примерно одинаково поглощающих излучение, применяют искусственное контрастирование. С этой целью в организм вводят вещества, которые поглощают рентгеновское излучение сильнее или, наоборот, слабее, чем мягкие ткани, и тем самым создают достаточный контраст по отношению к исследуемым органам. В качестве веществ, задерживающих рентгеновское излучение сильнее, чем мягкие ткани, используют йод или барий (для получения рентгеновских снимков пищеварительного тракта). Искуственное контрастирование применяют также в ангиографии – рентгенография кровеносных и лимфатических сосудов. Все манипуляции при ангиографии осуществляются под контролем рентгенотелевидения.

Позвоночник человека представляет собой сложный анатомо-функциональный комплекс, состоящий из разнородных по тканевому составу, анатомическому строению и функциям компонентов. Тяжесть заболеваний и повреждений позвоночника, характер их течения, а также выбор методов лечения находятся в прямой зависимости от степени вовлечения в патологический процесс этих компонентов и характера возникающих в них патологических изменений. Вместе с тем естественной рентгеновской контрастностью обладает и, следовательно, отображается на обычных рентгенограммах только один компонент позвоночного столба - позвонки, что обусловливает необходимость применения для развернутой рентгенологической характеристики анатомо-функционального состояния позвоночника, помимо стандартного рентгеноанатомического, ряда специальных методов рентгенологического исследования (прямого и косвенного рентгенофункциональных, искусственного контрастирования и вычислительной рентгенодиагностики).

Основу рентгенологического исследования позвоночника составляет обычная рентгенография. Полный его комплекс включает в себя производство рентгенограмм при исследовании шейного отдела в пяти проекциях, грудного - в четырех и поясничного, так же как и шейного, - в пяти. При исследовании шейного отдела этими проекциями являются: две стандартные, т.е. задняя и боковая, две косые (под углом 45° к сагиттальной плоскости) для выведения суставных щелей межпозвоночных суставов и рентгенограмма "через рот", позволяющая получить изображение в задней проекции двух верхних шейных позвонков, перекрытых на стандартной задней рентгенограмме тенями лицевого черепа и затылочной кости. Исследование грудного отдела позвоночника, помимо стандартных, производится еще и в двух косых проекциях, выполняемых с той же целью, что и при исследовании шейного отдела, однако тело ребенка отклоняется от сагиттальной плоскости под углом не 45°, а 15°. Четыре из пяти проекций, используемых для исследования поясничного отдела позвоночника, аналогичны четырем первым проекциям для исследования шейного отдела. Пятой является боковая, выполняемая при отклонении центрального пучка лучей в каудальном направлении под углом 20-25° с центрацией его на LIV. Рентгенография в этой проекции производится с целью выявления признаков остеохондроза нижнепоясничных межпозвоночных дисков.

Применение всех вышеперечисленных проекций позволяет получить развернутую информацию об особенностях анатомического строения всех отделов позвонков, однако показания к их использованию относительно ограничены, так как рентгенодиагностика большинства наиболее распространенных патологических изменений костных компонентов позвоночного столба у детей может быть обеспечена на основании анализа рентгенограмм, произведенных только в двух стандартных проекциях - задней и боковой.

Интерпретация данных обычной рентгенографии позволяет получить информацию об особенностях пространственного положения позвоночника (или его отделов) во фронтальной и сагиттальной плоскостях и позвонков в горизонтальной, об особенностях формы, размеров, контуров и внутренней структуры позвонков, характере анатомических соотношений между ними, форме и высоте межпозвоночных пространств, а также о величине локального костного возраста позвоночника. Как известно, биологический возраст различных систем человеческого организма не всегда совпадает с паспортным. Наиболее точным показателем возрастного периода формирования костно-суставной системы является степень оссификации костей запястья и эпифизов коротких трубчатых костей кисти. Однако при некоторых заболеваниях того или иного отдела опорно-двигательного аппарата в детском возрасте отмечается изменение темпов его развития по сравнению с темпами развития скелета в целом. Степень выраженности этого изменения является одним из показателей тяжести вызвавшего их патологического процесса

В качестве рентгенологического показателя возрастного периода формирования позвоночника используются стадии оссификации апофизов тел позвонков (Рохлин Д. Г., Финкельштейн М. А., 1956; Дьяченко В. А., 1954). По данным наших исследований, в процессе оссификации этих апофизов могут быть выделены шесть четко различимых между собой стадий, каждая из которых в норме соответствует определенному паспортному возрасту. Несовпадение нормативного возраста выявленной при рентгеноанатомическом исследовании стадии оссификации апофизов тел позвонков с паспортным возрастом ребенка расценивается как показатель нарушения темпов формирования позвоночника, в случае меньшего, чем паспортный, возраста стадии - в сторону замедления, большего - в сторону ускорения.

Дополнительным средством получения информации для стандартного рентгеноанатомического анализа является послойная рентгенография, или, как ее чаще называют, томография, обеспечивающая возможность изучения позвонков по слоям без затрудняющего анализ проекционного наслоения изображений разноудаленных от пленки частей этих позвонков. Основным показанием к применению томографии при заболеваниях позвоночника является необходимость решения вопроса о наличии или отсутствии и характере патологических изменений костной структуры, не выявляющихся на обычных рентгенограммах за тенью реактивного склероза или в силу незначительности их размеров.

Диагностическая ценность томографических данных в значительной мере зависит от правильности выбора проекций для проведения исследования и правильности определения глубины томографических срезов. Мы считаем целесообразным производить послойную рентгенографию позвоночника в боковой проекции по следующим соображениям. В положении больного лежа на боку позвоночник на всем его протяжении располагается параллельно поверхности снимочного стола, что является одним из ведущих условий получения качественного томографического изображения, тогда как в положении лежа на спине из-за наличия физиологических изгибов позвоночника соблюдение этого условия не обеспечивается. Далее, на томограммах, произведенных в боковой проекции, отображаются на одном и том же срезе как передние, так и задние отделы позвонков, причем последние - в наиболее выгодном для анализа виде, что позволяет ограничиваться относительно небольшим количеством срезов. На томограммах же, произведенных в задней проекции, отображаются либо, только тела, либо отдельные части дужек позвонков. Кроме того, исследование в задней проекции исключает возможность использования для определения уровня среза такого удобного анатомического ориентира, как верхушки остистых отростков.

Значимость правильности выбора глубины томографического среза определяется тем, что показания к применению послойной рентгенографии возникают, как правило, при относительно небольших по размеру патологических очагах, вследствие чего ошибка в определении глубины среза на 1 или даже на 0,5 см может привести к непопаданию их изображения на пленку. Использование симультанной кассеты, позволяющей за один пробег томографа получить последовательное изображение нескольких слоев снимаемого объекта при любом заданном расстоянии между слоями, подкупает своей простотой и высокой вероятностью совпадения одного из срезов с расположением участка деструкции. Вместе с тем такой способ томографирования связан с неоправданным расходованием рентгеновских пленок, анализ изображения на большинстве которых не несет диагностической информации, поскольку на них отображаются неизмененные участки позвонков.

Гораздо более оправданной является так называемая избирательная томография, направленная на выделение строго определенного участка тела или дужки позвонка. Расчет глубины среза в случаях, когда участок патологически измененной костной ткани в какой-то мере виден на обычной задней рентгенограмме, производится на основании данных простой рентгенометрии. Измеряется расстояние от патологического очага до основания остистого отростка позвонка, затем после укладки больного измеряется расстояние от поверхности снимочного стола до легко определяемой пальпаторно верхушки остистого отростка подлежащего исследованию позвонка, и к полученной величине добавляется или из нее вычитается величина, равная измеренному по рентгенограмме расстоянию между патологическим очагом и основанием остистого отростка. Сказанное может быть проиллюстрировано на следующем конкретном примере. Педположим, что на обычной рентгенограмме выявлены увеличение размеров и изменение костной структуры правого верхнего суставного отростка одного из грудных позвонков. Величина расстояния между этим суставным отростком и основанием остистого на рентгенограмме равна 1,5 см. Расстояние от поверхности снимочного стола до верхушки остистого отростка исследуемого позвонка, измеренное после укладки больного на бок, равно 12 см. Отсюда глубина среза равна 12-1,5 (если больной лежит на правом боку) и 12+1,5 см (если лежит на левом).

При трудности определения местоположения участка деструкции или других патологических изменений костной ткани на задней рентгенограмме выявление его на томограмме обеспечивается, как правило, выполнением трех томографических срезов: на уровне основания остистого отростка и правого и левого суставных. На первом из названных томографических срезов отображаются остистые отростки на всем их протяжении просвет позвоночного канала и центральные отделы тел позвонков, на двух остальных - соответствующие верхние и нижние суставные отростки и боковые отделы дуг и тел позвонков.

Стандартное рентгейоанатомическое исследование, хотя и обладает достаточно высокими информативными возможностями, не обеспечивает всей полноты диагностики нерезко выраженных патологических состояний межпозвоночных дисков и нарушений функций позвоночного столба. Решение этих вопросов требует применения методов искусственного контрастирования и прямого и косвенного рентгенофункционального исследований.

Искусственное контрастирование межпозвонковых дисков - дискография - нашло применение, в основном, в диагностике и определении тяжести остеохондроза межпозвонковых дисков. В качестве контрастирующих веществ используются йодсодержащие соединения на жировой или водной основе в количестве 0,5-1 см3 на один межпозвоночный диск. Рентгенография позвоночника после контрастирования дисков производится в двух стандартных проекциях. Некоторые авторы рекомендуют, кроме того, выполнять рентгенограммы и в различных функциональных положениях.

В неизмененном или нерезко измененном межпозвонковом диске контрастируется только желатинозное ядро, отображающееся на задних рентгенограммах у взрослых и подростков в виде двух горизонтальных полос, у детей - в виде тени овальной или округлой формы. На боковой рентгенограмме желатинозное ядро межпозвонкового диска у взрослых имеет С-образную форму, у детей -треугольную.

Типичная для выраженного остеохондроза фрагментация межпозвонковых дискоз проявляется на дискограммах затеканием контрастирующего вещества в промежутки между фрагментами фиброзного кольца, а также уменьшением размеров и неправильностью формы желатинозного ядра. Используется дискография и для определения стадий перемещения желатинозного ядра у детей, страдающих структуральным сколи-

При наличии целого ряда диагностических достоинств контрастная дискография в детской клинике имеет ограниченные показания. Прежде всего, прижизненно и вне оперативного вмешательства введение контрастирующего вещества возможно только в диски шейного и средне- и нижнепоясничного отделов позвоночника. (Искусственное контрастирование межпозвонковых дисков грудного отдела исследователями производилось во время операции спондилодеза). Далее, остеохондроз межпозвонковых дисков у детей развивается относительно редко, и, наконец, по данным наших исследований, достоверная информация о состоянии дисков может быть получена на основании более простого в техническом отношении и атравматичного прямого рентгенофункционального исследования.

Информация о состоянии статико-динамических функций опорно-двигательного аппарата средствами рентгенологического исследования достигается двумя путями - на основании анализа на стандартных рентгенограммах деталей анатомического строения костей, отражающих величину функциональных нагрузок, приходящихся на тот или иной отдел костно-суставной системы, и путем рентгенографии суставов или позвоночника в процессе осуществления ими опорной или двигательной функций. Первый из этих способов называется методом косвенного рентгенофункционального исследования, второй - прямого.

Исследование состояния функций позвоночника на основании косвенных показателей включает в себя оценку архитектоники костной структуры и степени минерализации костной ткани. Последняя входит в комплекс косвенного рентгенофункционального исследования на том основании, что изменения ее являются следствием нарушения функций либо самой костной ткани, либо функций опорно-двигательного аппарата в целом. Основным объектом исследований при анализе костной структуры являются так называемые силовые линии, представляющие собой скопления одинаково ориентированных, интенсивных костных пластинок. Одинаково направленные силовые линии группируются в системы, количество и характер которых были описаны в гл. I. Архитектоника костной структуры, как это установлено многими исследователями, является функциональной системой высокой реактивности, оперативно отзывающейся изменением выраженности силовых линий или их переориентацией на любые, даже незначительные, изменения статико-динамических условий.

Наиболее легкая степень нарушения нормальной архитектоники костной структуры тел и дужек позвонков заключается в частичном или полном рассасывании силовых линий в тех отделах, нагрузка на которые уменьшилась, и в усилении их в отделах, испытывающих повышенную нагрузку. Более выраженные биомеханические нарушения, особенно расстройства нервной трофики, сопровождаются так называемым дедифференцированием костной структуры - полным рассасыванием всех силовых линий. Показателем резко выраженных изменений в характере распределения статико-динамических нагрузок в пределах позвоночного столба или одного из его отделов является переориентация силовых линий - вертикальная их направленность в телах позвонков и дугообразная - в дужках сменяется на горизонтальную.

Рутинным рентгеноанатомическим приемом выявления изменений степени минерализации костной ткани является визуальная сравнительная оценка оптических плотностей рентгеновского изображения пораженных и здоровых позвонков. Субъективность и приблизительность данного способа вряд ли требуют особых доказательств. Объективным способом рентгенологической оценки степени минерализации костей является фотоденситометрия, сущность которой заключается в проведении фотометрии оптической плотности рентгеновского изображения позвонков и сравнения полученных показателей с показателями фотометрии эталона нормы. Для обеспечения достоверности фотоденситометрической диагностики остеопороза или остеосклероза эталон нормы должен удовлетворять трем требованиям: 1) оптическая плотность его рентгеновского изображения должна быть соотносима с оптической плотностью рентгеновского изображения позвонков; 2) эталон должен содержать в себе образцы оптической плотности нормальной кости различной толщины (для обеспечения количественной характеристики изменений минеральной насыщенности); 3) эталон должен иметь толщину, позволяющую помещать его во время рентгенографии под мягкие ткани туловища без нарушения этим правильности укладки и причинения неприятных ощущений ребенку. В наибольшей степени удовлетворяют этим условием эталоны из искусственных материалов.

Создание градаций оптической плотности эталона достигается путем придания ему клиновидной или ступенчатой формы. Рентгенограммы позвоночника в случае предполагающегося фотоденситометрического исследования производятся с подкладкой эталона под мягкие ткани поясничной области для обеспечения идентичности условий экспозиции позвонков и эталона и условий проявления рентгеновской пленки. Качественная оценка минерализации костной ткани позвонков производится путем сравнения показателей фотометрии оптической плотности их рентгеновского изображения и рентгеновского изображения участка эталона, содержащего образец оптической плотности нормальной костной ткани той же толщины. При выявлении разности показателей, свидетельствующей об отклонениях от нормы в степени минерализации позвонков, проводится дополнительная фотометрия эталона с целью определения больше или меньше должной оптическая плотность исследуемого позвонка (или позвонков) и какой конкретно толщине нормальной костной ткани она соответствует.

Наиболее удобным видом количественной характеристики изменений минеральной насыщенности позвонков (но не ее абсолютной величины) является выраженное в процентах отношение ее к должной. Толщина тела позвонка, измеренная по рентгенограмме, произведенной в противоположной проекции, принимается за 100%, толщина нормальной кости, которой соответствует оптическая плотность рентгеновского изображения позвонка,- за х %.

Предположим, оптическая плотность тела позвонка на боковой рентгенограмме, имеющего фролтальный размер, равный 5 см, соответствует оптической плотности нормальной кости толщиной 3 см. Составляется следующая пропорция: 5 см - 100%, 3 см - х%

Отсюда степень минеральной насыщенности костной ткани позвонка составляет от должной = 60%

Наиболее технически совершенным средством получения информации о процессе осуществления двигательной функции является кинорентгенография, т.е. киносъемка с экрана рентгеновского изображения движущегося позвоночника. Однако для целей рентгенодиагностики нарушения функций дискосвязочного аппарата позвоночного столба кинорентгенография с успехом может быть заменена обычной рентгенографией, произведенной в нескольких, рационально выбранных фазах движения. Киносъемка, как известно, производится со скоростью 24 кадра в секунду, а при использовании "лупы времени" - с еще большей скоростью. Это означает, что промежуток времени, проходящий между экспозицией двух соседних кадров, равняется минимум,54 с. За столь короткое время соотношения между телами и дужками позвонков не успевают заметно измениться, и на нескольких соседних кадрах получаются практически идентичные изображения. Таким образом, нет необходимости изучать все полученные кадры, достаточно провести анализ только некоторых из них. Более того, количество кадров, необходимых для характеристики двигательной функции, относительно невелико. Кинорентгенография применялась преимущественно с целью определения нормального объема подвижности позвоночника. Полученные при этом данные практически не отличались от данных, полученных авторами, применявшими для той же цели обычную рентгенографию в двух крайних положениях движения позвоночника - сгибания и разгибания или боковых наклонов.

По данным наших исследований, необходимый и достаточный объем информации о состоянии межпозвоночных дисков и двигательной функции позвоночника или его отделов может быть получен на основании анализа рентгенограмм, произведенных в трех функциональных положениях: при физиологической разгрузке, т.е. в положении больного лежа при стандартной укладке, при статической нагрузке, т.е. в положении больного стоя, и в крайних фазах свойственных позвоночнику движений. Выбор проекций для рентгенографии (задняя или боковая), а также количество снимков в третьем функциональном положении (в обоих крайних положениях того или иного движения или только в одном из них) определяются ведущей направленностью исследования (выявление нарушений функций межпозвоночных дисков, нарушения стабилизирующих функций дискосвязочного аппарата, определение объема подвижности позвоночника или его отделов), а также плоскостью максимального проявления -исследуемых патологических изменений.

Обязательным условием выполнения рентгенограмм при проведении прямого рентгенофункционального исследования является соблюдение идентичности кожно-фокусного расстояния, положения фронтальной или сагиттальной плоскости тела больного по отношению к поверхности снимочного стола и идентичности центрации центрального пучка рентгеновских лучей. Необходимость соблюдения этих условий вызвана тем, что интерпретация данных прямого рентгенофункционального исследования включает в себя сравнительный анализ ряда линейных величин и местоположения ряда рентгеноанатомических ориентиров, находящихся в прямой зависимости от условий осуществления рентгенографии.

Рентгенофункциональная диагностика состояния межпозвоночных дисков основывается на оценке их эластических свойств, состояния двигательной и стабилизирующей функций. Оценка первых двух показателей производится путем сравнительного анализа результатов рентгенометрии высоты парных краевых отделов межпозвоночных пространств (правого и левого или переднего и заднего) при различных условиях статико-динамических нагрузок. Состояние стабилизирующей функции определяется на основании анализа соотношений между телами позвонков в различных функциональных положениях.

Показателями нормальных эластических свойств диска являются равномерное увеличение их высоты на рентгенограммах, произведенных в положении больного лежа, по сравнению с высотой на рентгенограммах, произведенных при статической нагрузке, не менее чем на 1 мм и амплитуда колебаний высоты краевых отделов диска от максимального сжатия до максимального расправления (при активных движениях туловища), равная 3-4 мм в грудном отделе позвоночника и 4-5 мм - в поясничном.

Рентгенофункциональным признаком нормальной двигательной функции диска является одинаковая величина увеличения и уменьшения высоты его краевых отделов при переходе тела из одного крайнего положения движения в какой-либо плоскости в другое, или, иными словами, возникновение на рентгенограммах, произведенных, например, при боковых наклонах вправо и влево, клиновидной деформации Дисков, совершенно идентичной по количественным показателям, но противоположной направленности.

Общеизвестно, что, помимо обеспечения движений позвоночника, межпозвонковые Диски обладают также стабилизирующей функцией, полностью исключая смещения тел позвонков относительно друг друга по ширине. Отсюда рентгенофункциональным признаком нарушения стабилизирующей функции диска является стабильное или появляющееся только при движении позвоночника смещение тела одного или нескольких позвонков по отношению к нижележащему. Степень этого смещения ввиду наличия костных ограничителей (почти вертикально расположенных суставных отростков) невелика (не более 2-2,5 мм) и выявляется только при тщательном рентгеноанатомическом анализе.

Каждому из видов патологической перестройки межпозвонковых дисков (остеохондроз, фиброз, дислокация желатинозного ядра, избыточная растяжимость) присущ свой комплекс нарушений функций, что позволяет осуществлять их рентгенодиагностику без применения контрастной дискографии методом прямого рентгенофункционального исследования.

Остеохондроз межпозвонковых дисков

Рентгенофункциональный синдром ранних его стадий складывается из снижения эластичности межпозвонкового диска и одностороннего нарушения двигательной функции, поскольку патологи ческий процесс вначале носит чаще всего сегментарный характер. Под влиянием физиологической разгрузки величина пораженного диска увеличивается на меньшую величину, чем непораженного. На рентгенограммах, произведенных при наклоне тела в сторону, противоположную расположению пораженного сегмента диска (например, вправо при поражении левой части диска), высота этого сегмента увеличивается на меньшую величину, чем симметричного ему, в данном случае правого, при обратной направленности наклона. Выраженный, тотальный остеохондроз проявляется рентгенофункциональными признаками. Помимо отсутствия реакций на физиологическую разгрузку, уменьшенной амплитуды колебаний краевых отделов, выявляются признаки патологической подвижности между телами и суставными отростками позвонков.

Фиброз межпозвонковых дисков

Рентгенофункциональный синдром этого вида патологической перестройки диска складывается из рентгенофункциональн ых признаков резкого снижения эластичности и почти полного отсутствия двигательной функции (форма диска при движениях туловища практически не меняется). Стабилизирующая функция диска сохраняется полностью, что отличает рентгенофункциональный синдром фиброза от рентгенофункциональных проявлений выраженного остехондроза.

Дислокация желатинозного ядра

Процесс перестройки межпозвонкового диска проходит три основные стадии: частичное перемещение желатинозного ядра, характеризующееся вначале незначительным, а затем и выраженным изменением его формы при сохранении нормального расположения; полное перемещение желатинозного ядра из центральных отделов к одному из краев диска; дегенеративно-дистрофическое поражение по типу фиброза или остеохондроза. Частичное перемещение желатинозного ядра характеризуется клиновидностью межпозвонкового пространства на рентгенограмме, произведенной в положении стоя, за счет увеличения по сравнению с должной высоты его на стороне, в которую направлена дислокация ядра. Эластические свойства диска не нарушены. При наклоне тела в сторону основания клина высота этой части диска хотя несколько и уменьшается, но остается больше должной. Двигательная функция противоположной части диска не нарушена, под влиянием наклона высота ее превышает должную.

Полное перемещение желатинозного ядра

Клиновидность диска выражена в большей степени (на рентгенограмме, произведенной при статической нагрузке) и обусловлена не только увеличением высоты его со стороны основания клина, но и уменьшением по сравнению с должной со стороны его вершины. Эластичность отделов диска, расположенных у вершины клина, снижена - при наклоне в сторону основания клина высота сниженных отделов диска увеличивается незначительно и не достигает должной. Реакция на этот наклон расширенной части диска такая же, как и при частичном перемещении желатинозного ядра, однако сопротивление к сжатию выражено в еще большей степени.

Избыточная растяжимость межпозвонковых дисков

Рентгенофункциональный синдром этого вида патологии межпозвонковых дисков складывается из рентгенофункциональных признаков патологической подвижности между телами позвонков, сочетающейся с превышающей нормальные значения амплитудой колебания высоты краевых отделов диска от максимального сжатия до максимального растяжения в крайних фазах того или иного движения позвоночника, что отличает рентгенофункциональный синдром повышенной растяжимости диска от рентгенофункциональных проявлений выраженного остеохондроза.

Объем подвижности позвоночника во фронтальной плоскости определяется по суммарной величине образующихся при наклонах вправо и влево дугообразных искривлений, измеренных по методике Кобба или Фергюссона. Нормальный объем боковой подвижности грудного отдела позвоночника у детей равняется, по данным наших исследований, 20-25° (по 10-12° в каждую сторону), поясничного - 40-50° (по 20-25° вправо и влево).

Объем подвижности в сагиттальной плоскости характеризуется разницей величин грудного кифоза и поясничного лордоза на рентгенограммах, произведенных в крайних положениях сгибания и разгибания позвоночника. Величина его в норме в грудном отделе позвоночника составляет 20-25°, в поясничном - 40°.

Объем ротационной подвижности (при вращении тела впрат во и влево) определяется как сумма углов поворота, измеренных на рентгенограммах, произведенных при повороте тела вокруг вертикальной оси вправо и влево. Нормальный объем этого вида подвижности двигательных сегментов позвоночника равен 30° (по 15° в каждую из сторон).

Нарушения функций мышечно-связочного аппарата позвоночника имеют три основных варианта: нарушение стабилизирующей функции, фиброзное перерождение мышц и связок и нарушение мышечного равновесия.

Рентгенофункциональными признаками нарушения стабилизирующей функции связочного аппарата являются стабильные или возникающие только в процессе осуществления движений нарушения соотношений между телами позвонков и в межпозвонковых суставах. Основная причина патологической подвижности между телами позвонков заключается в нарушении стабилизирующей функции межпозвоночных дисков, но поскольку в ограничении смещений тел позвонков по ширине принимают участие и связки, появление патологической подвижности свидетельствует о нарушении и их функций. Нарушения соотношений в межпозвонковых суставах из-за особенностей пространственного расположения их в грудном отделе позвоночника и вариабельности расположения в поясничном достоверно диагностируются на рентгенограммах, произведенных в стандартных проекциях, только при значительной степени выраженности. Рентгенологическим признаком выраженных подвывихов является соприкосновение верхушки нижнего суставного отростка вышележащего позвонка с верхней поверхностью дуги нижележащего. Выявление более тонких нарушений стабильности межпозвонковых суставов достигается проведением прямого рентгенофункционального исследования в косых проекциях.

Нарушение мышечного равновесия и фиброзное перерождение связок могут быть определе ны средствами прямого рентгенофункционального исследования только на основании учета комплекса показателей. Ведущим рентгенофункциональным признаком этих изменений является ограничение подвижности позвоночника в одной или нескольких плоскостях. Вместе с тем признак этот не является патогномоничным, поскольку объем подвижности позвоночника определяется состоянием функций не только мышц и связок, но и межпозвонковых дисков. Исходя из этого, ограничение подвижности позвоночника или отдельных его сегментов может рассматриваться как рентгенофункциональный показатель мышечно-связочных контрактур только при условии сочетания с рентгенофункциональными признаками нормальной эластичности межпозвонковых дисков.

Мышечно-связочные контрактуры, ограничивая двигательную функцию позвоночника, создают тем самым препятствия для проявления в полной мере эластических свойств дисков, особенно для расправления краевых его отделов при осуществлении движений. Учитывая это обстоятельство, достаточным основанием для заключения об отсутствии выраженной перестройки межпозвонковых дисков по типу фиброза, врожденной гипоплазии или полной дислокации желатинозного ядра являются увеличение их высоты при физиологической нагрузке (по сравнению с высотой на рентгенограммах, произведенных в положении больного стоя) и симметричность сжатия и расправления краевых отделов диска при боковых наклонах или сгибании и разгибании. Остеохондроз межпозвонковых дисков ограничения подвижности не вызывает.

Повреждения и заболевания позвоночника могут оказывать патологическое воздействие на оболочки и корешки спинного мозга, а в отдельных случаях - и на сам спинной мозг вследствие распространения в соответствующем направлении опухолевых масс, образования краевых костных разрастаний при остеохондрозе межпозвонковых дисков, смещения в дорсальном направлении свободных задних полупозвонков или фрагментов поврежденных тел и дужек. Данные о наличии предпосылок для возникновения неврологических расстройств могут быть получены при анализе обычных рентгенограмм на основании определенной направленности краевых костных разрастаний, локального уменьшения расстояния от задней поверхности тел позвонков до основания остистых отростков (на боковой рентгенограмме) или проецирования на фоне спинномозгового канала костных фрагментов, однако достоверное заключение может быть вынесено только на основании интерпретации данных контрастной миелографии или перидурографии.

При производстве миелографии контрастирующее вещество вводится в межоболочечное пространство путем спинномозговой пункции на уровне нижнепоясничных позвонков (после предварительного удаления 5 мл спинномозговой жидкости). При производстве перидурографии контрастное вещество вводят в периоболочечное пространство заднекрестцовым доступом. Каждый из названных способов рентгенологического исследования имеет свои достоинства и недостатки.

Миелография создает хорошие условия для изучения формы и фронтального и сагиттального размеров спинного мозга и тем самым для выявления его сдавлений, смещений внутри позвоночного канала, объемных процессов и т. д. С помощью этого метода достигается контрастирование корешков спинномозговых нервов (Ahu Н., Rosenbaum А., 1981). Вместе с тем процессы, вызывающие раздражающее, а не сдавливающее воздействие на спинной мозг, выявляются на миелограммах менее отчетливо. Кроме того, введение контрастирующего вещества в межоболочечное пространство спинного мозга может вызывать ряд нежелательных побочных явлений (тошноту, головную боль и даже спинальную эпилепсию). Подобные осложнения отмечаются у 22-40% больных (Langlotz М. et al., 1981). Производство миелографии при вертикальном положении тела больного снижает число этих осложнений, но не устраняет их полностью.

Перидурография, наоборот, имеет несомненные преимущества перед миелографией в диагностике задних грыж межпозвонкового диска, нерезко выраженных краевых костных разрастаний, неоссифицированных хрящевых экзостозов, направленных в сторону позвоночного канала или корешков спинных нервов; не дает нежелательных побочных явлений, но значительно менее информативна в отношении состояния спинного мозга.

Выявление в рентгеновском изображении не обладающих естественной контрастностью структур позвоночного канала достигается введением контрастирующих веществ, имеющих как более высокую, так и более низкую молекулярную массу, чем мягкие ткани. Несомненным преимуществом первых из них является обеспечение высокой контрастности получаемого изображения, однако введение необходимого для заполнения межоболочечного или периоболочечного пространства количества "непрозрачного" контрастирующего вещества может привести к перекрыванию его тенью изображения небольших по размерам мягкотканных образований. Введение же малых количеств таит в себе опасность неравномерного распределения контрастного вещества и создания ложного впечатления наличия патологических изменений. Контрастирующие вещества с более низкой молекулярной массой (газы) вследствие их "прозрачности" для рентгеновского излучения не вызывают перекрывания спаек, хрящевых фрагментов; равномерное выполнение контрастируемых пространств происходит при введении даже небольших количеств газа. Недостатком этого способа контрастирования является малая контрастность получаемого изображения.

Количество контрастирующего вещества колеблется в зависимости от возраста ребенка от 5 до 10 мл. Введение его и следующая за этим рентгенография позвоночника производятся на снимочном столе с приподнятым головным концом - при пневмоперидурографии для лучшего распространения газа в краниальном направлении, при применении жидких контрастирующих веществ, оказывающих раздражающее действие на головной мозг - с обратной целью, т.е. с целью депонирования контрастного вещества на ограниченном протяжении.

Рентгенограммы позвоночника после контрастирования спинномозгового канала производятся, как правило, в двух стандартных проекциях - переднезадней и боковой, однако при необходимости рентгенографию выполняют в боковой проекции в положении максимального разгибания позвоночника.