Специальная теория относительности А. Эйнштейна. Заметки о теории относительности Геометрический смысл преобразования Лоренца


Относительность одновременности

Цель урока: формировать новые представления о пространстве и времени; теория относительности доказала, что события одновременные для жителей Земли могут быть не одновременны для жителей другой космической цивилизации.

Ход урока

1. Проверка домашнего задания методом фронтального опроса

А) Для какой цели многие ученые пытались обнаружить движение Земли относительно эфира?

Б) Как подошел к проблеме «найти различие между инерциальными системами» А. Эйнштейн?

В) Сформулировать главный постулат теории относительности.

Г) Сформулировать второй постулат теории относительности.

Д) Почему публикация постулатов теории относительности требовала определенной научной смелости?

Е) Рассмотреть пример, когда наблюдатели видят центр сферы в разных точках пространства.

Ж) В чем суть противоречия с последним примером?

2.Изучение нового материала

А) Традиционно считалось что время – это величина абсолютная, и течет оно раз и навсегда заданным темпом. Но создание теории относительности показало, что это не так.

Б) Дело в том, что классические представления о времени и пространстве исходили из предположения о возможности мгновенной передачи сигналов и взаимодействий из одного места пространства в другое. Второй постулат о скорости света требует изменения обыденных представлений о пространстве и времени.

Не идет время раз и навсегда заданным темпом. Если бы сигнал передавался мгновенно, то можно было бы говорить об одновременности событий происшедших в пространственно разделенных местах. Даже часы синхронизировать можно было бы абсолютно точно при мгновенной передаче сигнала. Пусть мгновенный сигнал пошел из точки А в 12 часов 10 минут и пришел в точку В в это же время, то часы размещенные в этих точках – синхронны.

События происходят одновременно, если синхронные часы показывают одно и то же время.

Синхронизировать часы помогают электромагнитные сигналы, так как скорость их строго определенная и постоянная. При проверке часов по радио используют синхронизацию огромного количества часов с эталонными точными часами. Можно вычислить поправку на запаздывание сигнала, если знать на каком расстоянии от вас находятся эталонные часы. Эта поправка в обыденной жизни не имеет значения. Она может быть значимой только при больших космических расстояниях.

Рассмотрим один из методов синхронизации часов.

На космическом корабле на, противоположных концах, установлены часы А и В. Космонавт хочет проверить синхронно ли они идут. В середине корабля расположен источник света, с помощью которого космонавт производит вспышку. Если свет одновременно достигает часов, значит, часы работают синхронно. Так будет только в системе отсчета К 1

Если рассматривать движение корабля относительно системы отсчета К, все будет по другому.

От места, где произошла вспышка (точка с координатой ОС) часы, расположенные на носу корабля удаляются. Световая волна должна пройти расстояние большее, чем половина длины корабля, чтобы дойти до часов. К месту вспышки приближаются часы В, расположенные на корме корабля, Значит в этом случае световая волна пройдет расстояние меньше, чем половина длины корабля.

На рисунке а) координаты х 1 и х в момент вспышки совпадают.

На рисунке б) видно, как световая волна доходит до часов, расположенных на корме.

Другой космонавт из системы отсчета К видит, что световые сигналы доходят до часов не -одновременно.

Значит любые события одновременные в системе К 1 , неодновременны в системе К.

Равноправность систем К 1 и К вытекает из принципа относительности, т.е. эти системы совершенно равноправны. На основании этого делаем заключение: одновременность событий, разделенных пространственно, относительна.

Мы живем в мире скоростей, гораздо меньших, чем скорости световых волн, поэтому представить наглядно относительность одновременности событий очень трудно. Но тем не менее, одновременность событий относительна.

3. Закрепление изученного материала

А) Почему оказались несостоятельными классические представления о том, что время – абсолютно?

Б) Как производят синхронизацию часов?

В) Доказательство, что одновременность событий относительно.

Подведем итоги урока.

Домашнее задание:

ОТНОСИТЕЛЬНОСТЬ ОДНОВРЕМЕННОСТИ

До начала XX века никто не сомневался, что время абсолютно. Два события, одновременные для жителей Земли, одновременны для жителей любой космической цивилизации. Создание теории относительности показало, что это не так.

Причиной несостоятельности классических представлений о пространстве и времени является неправильное предположение о возможности мгновенной передачи взаимодействий и сигналов из одной точки пространства в другую. Существование предельной конечной скорости передачи взаимодействий вызывает необходимость глубокого изменения обычных представлений о пространстве и времени, основанных на повседневном опыте. Представление об абсолютном времени, которое течет раз и навсегда заданным темпом, совершенно независимо от материи и ее движения, оказывается неправильным.

Если допустить мгновенное распространение сигналов, то утверждение, что события в двух пространственно разделенных точках А и В произошли одновременно, будет иметь абсолютный смысл. Можно поместить в точки А и В часы и синхронизировать их с помощью мгновенных сигналив. Если такой сигнал отправлен из А , например, в 0 ч 45 мин и он в этот же момент времени по часам В пришел в точку В , то, значит, часы показывают одинаковое время, т. е. идут синхронно. Если же такого совпадения нет, то часы можно синхронизировать, подведя вперед те часы, которые показывают меньшее время в момент отправления сигнала.

Любые события, например два удара молнии, одновременны, если они происходят при одинаковых показаниях синхронизированных часов.

Только располагая в точках А и В синхронизированными часами, можно судить о том, произошли ли два каких-либо события в этих точках одновременно или нет. Но как можно синхронизировать часы, находящиеся на некотором расстоянии друг от друга, если скорость распространения сигналов не бесконечно велика?

Для синхронизации часов естественно прибегнуть к световым или вообще электромагнитным сигналам, так как скорость электромагнитных волн в вакууме является строго определенной, постоянной величиной.

Именно этот способ используют для проверки часов по радио. Сигналы времени позволяют синхронизировать ваши часы с точными эталонными часами. Зная расстояние от радиостанции до дома, можно вычислить поправку на запаздывание сигнала. Эта поправка, конечно, очень невелика. В повседневной жизни она не играет сколько-нибудь заметной роли. Но при огромных космических расстояниях она может оказаться весьма существенной.

Рассмотрим подробнее простой метод синхронизации часов, не требующий никаких вычислений. Допустим, что космонавт хочет узнать, одинаково ли идут часы А и В , установленные на противоположных концах космического корабля (рис. 40). Для этого с помощью источника, неподвижного относительно корабля и расположенного в его середине, космонавт и производит вспышку света. Свет одновременно достигает обоих часов. Если показания часов в этот момент одинаковы, то часы идут синхронно.

Рис. 40

Но так будет лишь относительно системы отсчета К 1 , связанной с кораблем. В системе же отсчета К , относительно которой корабль движется, положение иное. Часы на носу корабля удаляются от того места, где произошла вспышка света источника (точка с координатой ОС ), и чтобы достигнуть часов А , свет должен преодолеть расстояние, большее половины длины корабля (рис. 41, а, 6). Напротив, часы В на корме приближаются к месту вспышки, и путь светового сигнала меньше половины длины корабля. (На рис. 41, а координаты х и х 1 совпадают в момент вспышки; на рис. 41, б показано положение систем отсчета, когда свет достигает часов В .) Поэтому наблюдатель в системе К придет к выводу, что сигналы достигают обоих часов не одновременно.

Рис. 41

Два любых события в точках А и В , одновременные в системе К 1 не одновременны в системе К . Но в силу принципа относительности системы К 1 и К совершенно равноправны. Ни одной из этих систем нельзя отдать предпочтение. Поэтому мы вынуждены прийти к заключению, что одновременность пространственно разделенных событий относительна. Причиной относительности одновременности является, как мы видим, конечность скорости распространения сигналов.

Именно в относительности одновременности кроется решение парадокса со сферическими световыми сигналами. Свет одновременно достигает точек сферической поверхности с центром в точке О только с точки зрения наблюдателя, находящегося в покое относительно системы К . С точки зрения же наблюдателя, связанного с системой K 1 , свет достигает этих точек в разные моменты времени.

Разумеется, справедливо и обратное: в системе К свет достигает точек поверхности сферы с центром в O 1 в различные моменты времени, а не одновременно, как это представляется наблюдателю в системе К 1 .

Отсюда следует, что никакого парадокса в действительности нет.

Одновременность событий относительна. Представить себе это наглядно, «почувствовать», мы не в состоянии из-за того, что скорость света много больше тех скоростей, с которыми движемся мы.

ОСНОВНЫЕ СЛЕДСТВИЯ, ВЫТЕКАЮЩИЕ ИЗ ПОСТУЛАТОВ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ

Из постулатов теории относительности вытекает ряд важнейших следствий, касающихся свойств пространства и времени. Мы не будем останавливаться на сравнительно сложном обосновании этих следствий. Ограничимся лишь кратким их перечислением.

Относительность расстояний

Расстояние не является абсолютной величиной, а зависит от скорости движения тела относительно данной системы отсчета.

Обозначим через l 0 длину стержня в системе отсчета К, относительно которой стержень покоится. Тогда длина l этого стержня в системе отсчета К 1 , относительно которой стержень движется со скоростью , определяется формулой

(2.1)

Как видно из этой формулы, l > l 0 .В этом состоит релятивистское сокращение размеров тела в движущихся системах отсчета (релятивистскими называются эффекты, наблюдаемые при скоростях движения, близких к скорости света).

Относительность промежутков времени

Пусть интервал времени между двумя событиями, происходящими в одной и той же точке инерциальной системы К , равен 0 . Этими событиями, например, могут быть два удара метронома, отсчитывающего секунды.

Тогда интервал между этими же событиями в системе отсчета K 1 , движущейся относительно системы К со скоростью , выражается так:

(2.2)

Очевидно, что > 0 . В этом состоит релятивистский эффект замедления времени в движущихся системах отсчета.

Если  <<с, то в формулах (2.1) и (2.2) можно пренебречь величиной . Тогда l l 0 и  0 , т. е. релятивистское сокращение размеров тел и замедление времени в движущейся системе отсчета можно не учитывать.

Релятивистский закон сложения скоростей

Новым релятивистским представлениям о пространстве и времени соответствует новый закон сложения скоростей. Очевидно, что классический закон сложения скоростей не может быть справедлив, так как он противоречит утверждению о постоянстве скорости света в вакууме.

Если поезд движется со скоростью и в вагоне в направлении движения поезда распространяется световая волна, то ее скорость относительно Земли должна равняться опять-таки , а не . Новый закон сложения скоростей и должен приводить к требуемому результату.

Мы запишем закон сложения скоростей для частного случая, когда тело движется вдоль оси Х 1 системы отсчета К 1 , которая в свою очередь движется со скоростью относительно системы отсчета К . Причем в процессе движения координатные оси Х и Х 1 все время совпадают, а координатные оси Y и Y 1 , Z и Z 1 остаются параллельными (рис. 42).

Рис. 42

Обозначим скорость тела относительно К 1 через 1 , а скорость этого же тела относительно К через 2 . Тогда релятивистский закон сложения скоростей будет иметь вид

(2.3)

Если <<с и 1 <<с , то членом в знаменателе можно пренебречь, и вместо (2.3) получим классический закон сложения скоростей: 2 = 1 + .

При 1 скорость 2 также равна с , как этого требует второй постулат теории относительности. Действительно,

Замечательным свойством релятивистского закона сложения скоростей является то, что при любых скоростях 1 и (конечно, не больших с) результирующая скорость 2 не превышает с .

Релятивистский закон сложения скоростей справедлив, но не нагляден. Представьте себе большую космическую ракету, движущуюся относительно Земли со скоростью, близкой к скорости света с. С нее стартует малая ракета и приобретает скорость, близкую к с относительно большой ракеты. Однако скорость малой ракеты относительно Земли окажется почти такой же, как и большой.

? 1 . При каких скоростях движения релятивистский закон сложения скоростей переходит в классический (закон Галилея)? 2 . В чем состоит принципиальное отличие скорости света от скоростей движения всех тел?

? Какие события называются одновременными?

Постулаты специальной теории относительности (СТО) были сформулированы Альбертом Эйнштейном в 1905 г. Эти положения принимаются без доказательств и являются фундаментальными утверждениями. Их применение позволило Эйнштейну объяснить явления, в которых частицы двигаются со скоростями, близкими к скорости света.

Первый постулат называется принципом относительности Эйнштейна: «Все законы природы одинаковы во всех инерциальных системах отсчета». Напомним, что инерциальной системой отсчета будет считаться такая система, которая движется равномерно и прямолинейно. Иными словами, эта система не ускоряется, не тормозится и не движется по окружности. В такой системе невозможно с помощью эксперимента проверить состояние самой системы - движется она или находится в состоянии покоя. Формулировка первого постулата вытекает из теоретического объяснения результатов опыта Май-кельсона-Морли. (Любопытный студент может задаться вопросом о непрямолинейности движения Земли по орбите, но Земля уклоняется на 3 мм, пройдя путь в 300 км, и таким искривлением можно пренебречь.) Вводя первый постулат, Эйнштейн расширяет границы применимости принципа относительности Галилея.

Второй постулат носит название принципа постоянства скорости света. «Свет в пустоте всегда распространяется с определенной скоростью с, не зависящей от состояния движения излучающего тела».

Пусть свет всегда в вакууме распространяется с постоянной скоростью, но тогда при переходе к инерциальной системе придется зафиксировать изменение скорости света при движении в сторону его источника или удаляясь от источника света. Мы вынуждены нарушить принятый постулат. И еще опровергнуть результаты опыта Майкельсона.

Оба постулата кажутся противоречащими друг другу. Тем не менее А. Эйнштейн соединяет их в единую теорию и строит новую физическую картину мира. Введенные Эйнштейном постулаты изменили представления физиков об окружающем мире. Из этих двух положений выросла новая модель мира. Эйнштейн и Фридман (о нем речь еще впереди) третий раз в истории человечества изменили основы научного представления о Вселенной. Напомним, что первый раз это сделали Аристотель (создав основы античной физики), Гиппарх и Птолемей (создав гелиоцентрическую систему мира), а второй - Коперник, Кеплер, Ньютон (предложив, уточнив и сформулировав гелиоцентрическую систему мира и создав основы классической физики).

Относительность одновременности событий

В классической механике события могут быть одновременными. Это привычно и не вызывает сомнений. Установить одновременность просто: если события наблюдаются одновременно, то они одновременны, если наблюдать их нельзя сразу, то мы можем сопоставить время их наступления по часам. «В Москве пятнадцать часов… в Петропавловске-Камчатском - полночь», - говорит диктор радио. Если в этот момент в городе на Камчатке звучал выстрел из пушки, а в Москве раздавался звонок с урока, то эти события были одновременны. Их можно было сравнить с помощью действующего часового механизма. Так привычно, но за этой привычкой скрывается неявное допущение. Скорость передачи сигнала о событии принимается мгновенной или пренебрежимо малой по отношению к самому событию.

Скорость света - наибольшая в природе, позволяющая передавать информацию. Большие скорости передачи информации физике не известны. Поэтому наиболее точно устанавливать одновременность событий возможно только с помощью света. Напомним, что электромагнитное излучение включает в себя инфракрасные волны, видимый свет, ультрафиолетовый диапазон, рентгеновские лучи. Пришли волны от разных источников одновременно, значит, события для наблюдателя стали одновременными. А кто опоздал, тот, значит, был позже. Таким образом, получается, что два наблюдателя, находящихся по разные стороны от двух событий, увидят различную последовательность происходящего? Рассмотрим систему координат, в которой одновременно произошли события С 1 и С 2 . Пусть наблюдатель находится ближе к месту, в котором произошло событие С 1 , свет до наблюдателя дойдет быстрее, чем от события в точке С 2 . Другой наблюдатель, расположенный ближе к точке С 2 . увидит другую последовательность событий. Кто из этих двух наблюдателей прав? Правы оба, но только не в абсолютном, а в относительно смысле. Каждый из наблюдателей прав, так как каждый видел истинную картину происходящего, но относительно своего местоположения.

Может ли в таком случае нарушиться принцип причинности, т.е. последовательность событий, определяющих, какое из двух явлений будет причиной, а какое - следствием? Например, возможен ли случай, в котором сначала пуля попадет в медведя, а потом выстрелит охотник? Нет, такого не произойдет. Пусть наблюдатель стоит ближе к животному и дальше от его убийцы. Сигнал от медведя дойдет быстрее, чем сигнал от охотника. Но все же сначала мы увидим вспышку от выстрела, потом будет задержка (время пролета пули из ружья во всеядное), потом упадет медведь. В связанных между собой событиях причинность не нарушается. Два таких события не относительны по отношению друг к другу или к наблюдателю. Относительность последовательности происходящих событий будет возникать только в случае независимых событий, таких, которые никаким образом не связаны друг с другом.

Пространственно-временной интервал.

Величиной, характеризующей пространственно-временные отношения в релятивистской механике, и которая не зависит от преобразования систем отсчета, является так называемый пространственно-временной интервал . Пространственно-временной интервал (или просто интервал) между событиями 1 и 2 – это величина, определяемая формулой:

Пространственный интервал для какого-то конкретного объекта имеет одно и то же значение во всех инерциальных системах отсчета. Он является инвариантом по отношению к преобразованиям Лоренца. Пространственно-временной интервал играет в релятивистской механике ту же роль, что и пространственный интервал в классической механике.

Расстояния между точками и время между событиями, взятые отдельно друг от друга, относительны; они меняются при переходе от одной системы отсчета к другой. Но совместно в составе интервала они образуют абсолютную пространственно-временную характеристику событий. В этом проявляется взаимосвязь пространства и времени, продемонстрированная теорией относительности. Связь эта состоит в том, что при переходе между системами отсчета определенному изменению пространственного интервала между точками 1 и 2, в которых происходят некоторые события, соответствует не какое угодно, а определенное изменение времени между событиями в этих точках; и эти величины согласованы формулой интервала .

Формулы релятивисткой динамики.

Зависимость массы от скорости. Масса движущихся релятивистских частиц зависит от их скорости:

M 0 - масса неподвижного тела, [кг]; m - масса того же тела, движущегося со скоростью υ, [кг];

с - скорость света в ваку­уме.

Следовательно, масса одной и той же частицы различна в разных инерциальных системах отсчета.

Импульс тела, движущегося.

Импульс тела, движется, [(кг · м)/c]; - сила, действующая на тело, [Н].

При υ=c получим, что со скоростью, равной скорости света может двигаться только тело, имеющее массу, равную нулю. Это говорит о предельном характере скорости света для материальных тел.

Закон взаимосвязи массы и энергии

ΔЕ - величина изменения энергии, [Дж], 1еВ = 1,6 · 10 -19 Дж;

Δm - величина изменения массы, [кг].

Гипотеза Эйнштейна

E 0 - энергия покоя, [Дж]; m 0 - масса покоя, [кг]; Е - полная энергия, [Дж]; m - масса, [кг].

Если изменяется энергия системы, то изменяется и ее масса: . Всякое изменение любой энергии (тела, частицы, системы тел) на сопровождается пропорциональным изменением массы на Δm.

Нельзя говорить, что при этом масса переходит в энергию. В действительности энергия переходит из одной формы (механической) в другие (электромагнитную и ядерную), но любое превращение энергии сопровождается превращением массы.

Основные положения молекулярно-кинетической теории.

Молекулярно-кинетической теорией называют учение о строении и свойствах вещества на основе представления о существовании атомов и молекул как наименьших частиц химических веществ.

В основе молекулярно-кинетической теории лежат три основных положения:

1.Все вещества – жидкие, твердые и газообразные – образованы из мельчайших частиц – молекул, которые сами состоят из атомов («элементарных молекул»). Молекулы химического вещества могут быть простыми и сложными, т.е. состоять из одного или нескольких атомов. Молекулы и атомы представляют собой электрически нейтральные частицы. При определенных условиях молекулы и атомы могут приобретать дополнительный электрический заряд и превращаться в положительные или отрицательные ионы.

2.Атомы и молекулы находятся в непрерывном хаотическом движении.

3.Частицы взаимодействуют друг с другом силами, имеющими электрическую природу. Гравитационное взаимодействие между частицами пренебрежимо мало.

Модель идеального газа.

Для объяснения свойств вещества в газообразном состоя­нии используется модель идеального газа . В этой модели газ рас­сматривается в виде совокупности молекул - шариков очень малых размеров и почти не взаимодействующих между собой, т.е. при рассмотрении законов идеального газа пренебрегают собственным объемом молекул (по сравнению с объемом сосуда, в котором он находится) и силами их взаимного притяжения; при соударениях молекул друг с другом и со стенками сосуда действуют силы упругого отталкивания. Идеального газа в при­роде не существует - это упрощенная модель реального газа. Реальный газ становится близким по свойствам к идеальному, когда он достаточно нагрет и разрежен. Некоторые газы, например, воздух, кислород, азот, даже при обычных условиях (комнатная температуре и атмосферное давление) мало отлича­ются от идеального газа. Особенно близки по своим свойствам к идеальному газу гелий и водород.

Вывод уравнения Клаузиуса.

Для превращения жидкости в пар при постоянной температуре необходимо сообщить жидкости дополнительное количество теплоты q , а при обратном процессе конденсации пара эта теплота поглощается. Эта дополнительная теплота называется скрытой теплотой парообразования, в процессе испарения она расходуется на преодоление сил межмолекулярного притяжения в жидкости.

Давление насыщенного пара зависит от температуры. Действительно, при повышении температуры увеличивается число испаряющихся молекул, то есть, чтобы пар остался равновесным, должно увеличиться и число влетающих из пара в жидкость молекул, а для этого должны увеличиться плотность и давление пара.

Для получения зависимости давления насыщенного пара от температуры рассмотрим замкнутый процесс – цикл (рис. 2).

Пусть при какой-то температуре Т жидкость полностью превращается в пар, оставаясь все время в равновесии с ним. Затем полученный пар охлаждается адиабатически до температуры
Т – dТ , после чего пар снова превращается в жидкость при этой температуре, причем пар опять находится в состоянии насыщения. Полученную жидкость нагревают адиабатически до начальной температуры Т .

Таким образом, наш замкнутый процесс представляет из себя равновесный цикл Карно, состоящий из двух изотерм при температурах Т и Т – dТ и двух адиабат. Коэффициент полезного действия цикла Карно равен

,

где в этой формуле Т 1 – температура нагревателя, а Т 2 температура холодильника. В нашем случае – это Т и (Т – dT ). Таким образом, к. п. д. цикла .

С другой стороны, к. п. д. любого цикла равен отношению работы, совершенной рабочим телом за цикл, к полученному количеству теплоты. Работа за цикл равна площади внутри кривой, изображающей его в переменных давление – объем. Таким образом, работа равна dp (V 2 – V 1), где dp – изменение давления насыщенного пара при изменении температуры на величину dT , а V 1 и V 2 – соответственно объем данного количества вещества в жидком и газообразном состоянии. За цикл вещество получило количество теплоты q 12 , равное скрытой теплоте испарения данного количества вещества. Таким образом, к. п. д. цикла

.

Приравнивая эти выражения для к. п. д, получаем:

.

Эта формула носит название уравнения Клапейрона–Клаузиуса. Оно связывает изменения температуры и давления при переходе из первого состояния (жидкость) во второе состояние (газ). При этом скрытая теплота перехода q 12 положительна. Отметим, что если переход происходит из газа (сост. 1) в жидкость (сост.2), то скрытая теплота q 12 отрицательна.

Изопроцессы.

Изопроце́ссы - термодинамические процессы, во время которых количество вещества и ещё одна из физических величин - параметров состояния: давление,объём, температура или энтропия - остаются неизменными. Так, неизменному давлению соответствует изобарный процесс, объёму - изохорный, температуре -изотермический, энтропии -изоэнтропийный (например, обратимый адиабатический процесс). Линии, изображающие данные процессы на какой-либо термодинамической диаграмме, называются изобара, изохора, изотерма и адиабата соответственно. Изопроцессы являются частными случаями политропного процесса.

Изобарный процесс - процесс изменения состояния термодинамической системы при постоянном давлении ().

Изохорный процесс - процесс изменения состояния термодинамической системы при постоянном объёме (). Для идеальных газов изохорический процесс описывается законом Шарля: для данной массы газа при постоянном объёме, давление прямо пропорционально температуре.

Изотермический процесс - процесс изменения состояния термодинамической системы при постоянной температуре (). Изотермический процесс в идеальных газах описывается законом Бойля- Мариотта: при постоянной температуре и неизменных значениях массы газа и его молярной массы, произведение объёма газа на его давление остаётся постоянным.

Распределение Больцмана.

Распределение Больцмана – распределение по энергиям частиц (атомов, молекул) идеального газа в условиях термодинамического равновесия было открыто в 1868–1871 гг. австрийским физиком Л. Больцманом.

В присутствии гравитационного поля (или, в общем случае, любого потенциального поля) на молекулы газа действует сила тяжести. В результате, концентрация молекул газа оказывается зависящей от высоты:

где n – концентрация молекул на высоте h, n 0 – концентрация молекул на начальном уровне h = 0, m – масса частиц, g – ускорение свободного падения, k – постоянная Больцмана, T – температура.

Работа газа.

Газообразные вещества способны значительно изменять свой объем. При этом силы давления совершают определенную механическую работу. Например, если газ подвергается сжатию в цилиндре под поршнем, то внешние силы совершают над газом некоторую положительную работу A ". В то же время силы давления, действующие со стороны газа на поршень, совершают работу A = –A ". Если объем газа изменился на малую величину V , то газ совершает работу pS Δx = p ΔV , где p давление газа, S площадь поршня, Δx его перемещение. При расширении работа, совершаемая газом, положительна, при сжатии – отрицательна. В общем случае при переходе из некоторого начального состояния (1) в конечное состояние (2) работа газа выражается формулой:

I начало термодинамики.

Сумма кинетической энергии теплового движения частиц вещества и потенциальной энергии их взаимодействия называ­ется внутренней энергией тела: U = Ek + Еp, Ek - средняя кинети­ческая энергия всех частиц, а Е р - потенциальная энергия взаимодействия частиц. Известно, что Ek зависит от темпера­туры тела, а Е р - от его объема. В случае идеального газа потенциальная энергия взаимодействия молекул отсутствует и внутренняя энергия равна сумме кинетических энергий хаотиче­ского теплового движения всех молекул газа. В результате для одноатомного газа имеем: U = (3/2)νRT = (3/2)PV

Изменение внутренней энергии тела (системы тел) опреде­ляется первым законом (началом) термодинамики . Изменение внутренней энергии системы Δ U при переходе ее из одного со­стояния в другое равно сумме работы внешних сил А’ и коли­чества теплоты Q, переданного системе: ΔU = А’ + Q.

По-другому это закон можно формулировать так: для того чтобы изменит внутреннюю энергию тела (повысить температуру тела), нужно либо совершить над ним работу, либо передать какое-либо количество теплоты ему. Например, если мы хотим согреть руки, то можно погреть их у батареи, либо потереть друг об друга (совершить над ними работу).

Работа самой системы над внешними телами А = -А′, т.е. равна работе внешних сил над системой со знаком минус. Поэтому Q = ΔU + А, т. е. количество теплоты, переданное системе, идет на изменение ее внутренней энергии и на работу системы над внешними силами (обе формулировки равноправны).

Первый закон термодинамики - это обобщение закона со­хранения и превращения энергии для термодинамической систе­мы. Из него следует, что в изолированной системе внутренняя энергия сохраняется при любых процессах (поскольку для изо­лированной системы А’ = 0 и Q = 0 , значит, ΔU = 0,

т. е. U = const).

Теорема Карно (с выводом).

Из всех периодически действующих тепловых машин, имеющих одинаковые температуры нагревателей T 1 и холодильников T 2 , наибольшим КПД обладают обратимые машины. При этом КПД обратимых машин, работающих при одинаковых температурах нагревателей и холодильников, равны друг другу и не зависят от природы рабочего тела, а определяются только температурами нагревателя и холодильника.
Для построения рабочего цикла использует обратимые процессы. Например, цикл Карно состоит из двух изотерм (1–2, 2-4) и двух адиабат (2-3, 4–1), в которых теплота и изменение внутренней энергии полностью превращаются в работу (рис. 19).

Рис. 19. Цикл Карно

Общее изменение энтропии в цикле: ΔS=ΔS 12 +ΔS 23 +ΔS 34 +ΔS 41.
Так как мы рассматриваем только обратимые процессы, общее изменение энтропии ΔS=0.
Последовательные термодинамические процессы в цикле Карно:

Общее изменение энтропии в равновесном цикле: ΔS=(|Q 1 |/T 1)+0-(|Q 2 |/T 2)+0=0⇒T 2 /T 1 =|Q 2 |/|Q 1 |,

поэтому: η max =1-(T 2 /T 1) - максимальный КПД теплового двигателя.
Следствия:
1. КПД цикла Карно не зависит от рода рабочего тела.
2. КПД определяется только разницей температур нагревателя и холодильника.
3. КПД не может быть 100% даже у идеальной тепловой машины, так как при этом температура холодильника должна быть T 2 =0, что запрещено законами квантовой механики и третьим законом термодинамики.
4. Невозможно создать вечный двигатель второго рода, работающий в тепловом равновесии без перепада температур, т.е. при T 2 =T 1 , так как в этом случае η max =0.

II начало термодинамики.

Первое начало термодинамики, выражая закон сохранения и превращения энергии, не позволяет установить направление протекания термодинамических процессов. Кроме того, можно представить множество процессов, не противоречащих первому началу, в которых энергия сохраняется, а в природе они не осуществляются. Появление второго начала термодинамики связано с необходимостью дать ответ на вопрос, какие процессы в природе возможны, а какие нет. Второе начало термодинамики определяет направление протекания термодинамических процессов.

Используя понятие энтропии и неравенство Клаузиуса, второе начало термодинамики можно сформулировать как закон возрастания энтропии замкнутой системы при необратимых процессах: любой необратимый процесс в замкнутой системе происходит так, что энтропия системы при этом возрастает.

Можно дать более краткую формулировку второго начала термодинамики: в процессах, происходящих в замкнутой системе, энтропия не убывает. Здесь существенно, что речь идет о замкнутых системах, так как в незамкнутых системах энтропия может вести себя любым образом (убывать, возрастать, оставаться постоянной). Кроме того, отметим еще раз, что энтропия остается постоянной в замкнутой системе только при обратимых процессах. При необратимых процессах в замкнутой системе энтропия всегда возрастает.

Формула Больцмана (2.134) позволяет объяснить постулируемое вторым началом термодинамики возрастание энтропии в замкнутой системе при необратимых процессах: возрастание энтропии означает переход системы из менее вероятных в более вероятные состояния. Таким образом, формула Больцмана позволяет дать статистическое толкование второго начала термодинамики. Оно, являясь статистическим законом, описывает закономерности хаотического движения большого числа частиц, составляющих замкнутую систему.

Укажем еще две формулировки второго начала термодинамики:

1) по Кельвину: невозможен круговой процесс, единственным результатом которого является превращение теплоты, полученной от нагревателя, в эквивалентную ей работу;

2) по Клаузиусу: невозможен круговой процесс, единственным результатом которого является передача теплоты от менее нагретого тела к более нагретому.

Можно довольно просто доказать эквивалентность формулировок Кельвина и Клаузиуса. Кроме того, показано, что если в замкнутой системе провести воображаемый процесс, противоречащий второму началу термодинамики в формулировке Клаузиуса, то он сопровождается уменьшением энтропии. Это же доказывает эквивалентность формулировки Клаузиуса (а следовательно, и Кельвина) и статистической формулировки, согласно которой энтропия замкнутой системы не может убывать.

В середине XIX в. возникла проблема так называемой тепловой смерти вселенной. Рассматривая Вселенную как замкнутую систему к применяя к ней второе начало термодинамики, Клаузиус свел его содержание к утверждению, что энтропия Вселенной должна достигнуть своего максимума. Это означает, что со временем все формы движения должны перейти в тепловую. Переход же теплоты от горячих тел к холодным приведет к тому, что температура всех тел во Вселенной сравняется, т. е. наступит полное тепловое равновесие и все процессы во Вселенной прекратятся – наступит тепловая смерть Вселенной. Ошибочность вывода о тепловой смерти заключается в том, что бессмысленно применять второе начало термодинамики к незамкнутым системам, например к такой безграничной в бесконечно развивающейся системе, как Вселенная.

Энтропия по Клаузиусу.

К макроскопическим параметрам термодинамической системы относятся давление, объём и температура. Однако существует ещё одна важная физическая величина, которую используют для описания состояний и процессов в термодинамических системах. Её называют энтропией.

Впервые это понятие ввёл в 1865 г. немецкий физик Рудольф Клаузиус. Энтропией он назвал функцию состояния термодинамической системы, определяющую меру необратимого рассеивания энергии.

Что же такое энтропия? Прежде чем ответить на этот вопрос, познакомимся с понятием «приведенной теплоты». Любой термодинамический процесс, проходящий в системе, состоит из какого-то количества переходов системы из одного состояния в другое. Приведенной теплотой называют отношение количества теплоты в изотермическом процессе к температуре, при которой происходит передача этой теплоты.

Q" = Q/T .

Для любого незамкнутого термодинамического процесса существует такая функция системы, изменение которой при переходе из одного состояния в другое равно сумме приведенных теплот. Этой функции Клаузиус дал название «энтропия » и обозначил её буквой S , а отношение общего количества теплоты ∆Q к величине абсолютной температурыТ назвал изменением энтропии .

Обратим внимание на то, что формула Клаузиуса определяет не само значение энтропии, а только её изменение.

Что же представляет собой «необратимое рассевание энергии» в термодинамике?

Одна из формулировок второго закона термодинамики выглядит следующим образом: "Невозможен процесс, единственным результатом которого является превращение в работу всего количества теплоты, полученного системой ". То есть часть теплоты превращается в работу, а какая-то её часть рассеивается. Этот процесс необратим. В дальнейшем рассеиваемая энергия уже не может совершать работу. Например, в реальном тепловом двигателе рабочему телу передаётся не вся теплота. Часть её рассеивается во внешнюю среду, нагревая её.

В идеальной тепловой машине, работающей по циклу Карно, сумма всех приведенных теплот равна нулю. Это утверждение справедливо и для любого квазистатического (обратимого) цикла. И неважно, из какого количества переходов из одного состояния в другое состоит такой процесс.

Если разбить произвольный термодинамический процесс на участки бесконечно малой величины, то приведенная теплота на каждом таком участке будет равна δQ/T . Полный дифференциал энтропии dS = δQ/T .

Энтропию называют мерой способности теплоты необратимо рассеиваться. Её изменение показывает, какое количество энергии беспорядочно рассеивается в окружающую среду в виде теплоты.

В замкнутой изолированной системе, не обменивающейся теплом с окружающей средой, при обратимых процессах энтропия не изменяется. Это означает, что дифференциал dS = 0 . В реальных и необратимых процессах передача тепла происходит от тёплого тела к холодному. В таких процессах энтропия всегда увеличивается (dS ˃ 0 ). Следовательно, она указывает направление протекания термодинамического процесса.

Формула Клаузиуса, записанная в виде dS = δQ/T , справедлива лишь для квазистатических процессов. Это идеализированные процессы, являющиеся чередой состояний равновесия, следующих непрерывно друг за другом. Их ввели в термодинамику для того, чтобы упростить исследования реальных термодинамических процессов. Считается, что в любой момент времени квазистатическая система находится в состоянии термодинамического равновесия. Такой процесс называют также квазиравновесным.

Конечно, в природе таких процессов не существует. Ведь любое изменение в системе нарушает её равновесное состояние. В ней начинают происходить различные переходные процессы и процессы релаксации, стремящиеся вернуть систему в состояние равновесия. Но термодинамические процессы, протекающие достаточно медленно, вполне могут рассматриваться как квазистатические.

На практике существует множество термодинамических задач, для решения которых требуется создание сложной аппаратуры, создание давления в несколько сот тысяч атмосфер, поддержание очень высокой температуры в течение длительного времени. А квазистатические процессы позволяют рассчитать энтропию для таких реальных процессов, предсказать, как может проходить тот или иной процесс, реализовать который на практике очень сложно.

Диффузия.

Диффузия переводится с латыни, как распространение или взаимодействие. Суть диффузии заключается в проникновении одних молекул вещества в другие. В процессе перемешивания происходит выравнивание концентраций обоих веществ по занимаемому ими объему. Вещество из места с большей концентрацией переходит в место с меньшей концентрацией, за счет этого и происходит выравнивание концентраций.

Факторы, влияющие на диффузию . Диффузия зависит от температуры. Скорость диффузии будет увеличиваться с увеличением температуры, потому что при повышении температуры будет увеличиваться скорость движения молекул, то есть молекулы будут быстрее перемешиваться. Агрегатное состояние вещества тоже будет влиять на то, от чего зависит диффузия, а именно на скорость диффузии. Тепловая диффузия зависит от вида молекул. Например, если предмет металлический, то тепловая диффузия протекает быстрее, в отличие от того, если бы этот предмет был сделан из синтетического материала. Очень медленно протекает диффузия между твердыми материалами. Диффузия имеет огромное значение в природе и в жизни человека.

Примеры диффузии . Чтобы лучше разобраться, что такое диффузия, рассмотрим ее на примерах. Молекулы веществ, не зависимо от их агрегатного состояния постоянно находятся в движении. Следовательно, диффузия происходит в газах, может происходить в жидкостях, а также в твердых телах. Диффузией является перемешивание газов. В простейшем случае, это распространение запахов. Если в воду поместить какой-нибудь краситель, то спустя время жидкость равномерно окрасится. Если два металла соприкасаются, то на границе соприкосновения происходит перемешивание их молекул.

Итак, диффузией является перемешивание молекул вещества при их беспорядочном тепловом движении.

Теплопроводность.

Теплопроводность- способность материальных тел к переносу энергии (теплообмену) от более нагретых частей тела к менее нагретым телам, осуществляемому хаотически движущимися частицами тела (атомами, молекулами, электронами и т. п.). Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества.

Теплопроводностью называется также количественная характеристика способности тела проводить тепло. В сравнении тепловых цепей с электрическими это аналогпроводимости.

Количественно способность вещества проводить тепло характеризуется коэффициентом теплопроводности. Эта характеристика равна количеству теплоты, проходящему через однородный образец материала единичной длины и единичной площади за единицу времени при единичной разнице температур (1 К). В системе СИ единицей измерения коэффициента теплопроводности является Вт/(м·K).

Внутреннее трение.

В реальной жидкости вследствие взаимного притяжения и теплового движения молекул имеет место внутреннее трение, или вязкость. Рассмотрим это явление на следующем опыте (рис. 8.1).

Рис. 8.1. Течение вязкой жидкости между пластинами

Поместим слой жидкости между двумя параллельными твердыми пластинами. «Нижняя» пластина закреплена. Если двигать «верхнюю» пластину с постоянной скоростью v 1 , то c такой же скоростью будет двигаться самый «верхний» 1-й слой жидкости, который считаем «прилипшим» к верхней пластине. Этот слой влияет на нижележащий непосредственно под ним 2-й слой, заставляя его двигаться со скоростью v 2 , причем v 2 < v 1 . Каждый слой (выделим n слоев) передает движение нижележащему слою с меньшей скоростью. Слой, непосредственно «прилипший» к «нижней» пластине, остается неподвижным.

Слои взаимодействуют друг с другом: n-й слой ускоряет (п+1)-й слой, но замедляет (п-1)-й слой. Таким образом, наблюдается изменение скорости течения жидкости в направлении, перпендикулярном поверхности слоя (ось х). Такое изменение характеризуют производной dv/dx, которую называют градиентом скорости.

Силы, действующие между слоями и направленные по касательной к поверхности слоев, называются силами внутреннего трения или вязкости. Эти силы пропорциональны площади взаимодействующих слоев S и градиенту скорости. Для многих жидкостей силы внутреннего трения подчиняются уравнению Ньютона:

Коэффициент пропорциональности η называют коэффициентом внутреннего трения или динамической вязкостью (размерность η в СИ: Пас).

Капиллярные явления.

Если поместить узкую трубку(капилляр) одним концом в жидкость, налитую в широ­кий сосуд, то вследствие смачивания или не смачивания жидкостью стенок капилляра кривизна поверхности жидкости в капилляре становится значительной. Если жидкость смачивает материал трубки, то внутри ее поверхность жидкости -мениск - имеет вогнутую форму, если не смачивает - выпуклую (рис. 101).

Под вогнутой поверхностью жидкости появится отрицательное избыточное давление, определяемое по формуле (68.2). Наличие этого давления приводит к тому, что жидкость в капилляре поднимается, таккак под плоской поверхностью жидкости в широком сосуде избыточного давления нет. Если же жидкость не смачивает стенки капилляра, то положительное избыточное давление приведет к опусканию жидкости в капилляре. Явление изменения высоты уровня жидкости в капиллярах называется капиллярностью. Жидкость в капилляре поднимается или опускается на такую высоту h , при которой давление столба жидкости (гидростатическое давление ) rgh уравновешивается избыточным давлением Dp , т. е.

где r - плотность жидкости, g - ускорение свободного падения.

Если r - радиус капилляра, q - краевой угол, то из рис. 101 следует, что (2s cosq )/r = rgh, откуда

(69.1)

В соответствии с тем, что смачивающая жидкость по капилляру поднимается, а не смачивающая - опускается, из формулы (69.1) при q

2 (cos q >0) получим положительные значения h , а при q>p/ 2 (cosq <0) - отрицательные. Из выражения (69.1) видно также, что высота поднятия (опускания) жидкости в капилляре обратно пропорциональна его радиусу. В тонких капиллярах жидкость поднимается достаточно высоко. Так, при полном смачивании (q =0) вода (r =1000 кг/м 3 , s = 0,073 Н/м) в капилляре диаметром 10мкм поднимается на высоту h »3 м.

Капиллярные явления играют большую роль в природа и технике. Например, влагообмен в почве и в растениях осуществляется за счет поднятия воды по тончайшим капиллярам. На капиллярности основано действие фитилей, впитывание влаги бетоном и т. д.

Относительность одновременности событий.

До начала XX века никто не сомневался, что время абсолютно. Два события, одновременные для жителей Земли, одновременны для жителей любой космической цивилизации. Создание теории относительности показало, что это не так.

Причиной несостоятельности классических представлений о пространстве и времени является неправильное предположение о возможности мгновенной передачи взаимодействий и сигналов из одной точки пространства в другую. Существование предельной конечной скорости передачи взаимодействий вызывает необходимость глубокого изменения обычных представлений о пространстве и времени, основанных на повседневном опыте. Представление об абсолютном времени, которое течет раз и навсегда заданным темпом, совершенно независимо от материи и ее движения, оказывается неправильным.

Если допустить мгновенное распространение сигналов, то утверждение, что события в двух пространственно разделенных точках А и В произошли одновременно, будет иметь абсолютный смысл. Можно поместить в точки А и В часы и синхронизировать их с помощью мгновенных сигналив. Если такой сигнал отправлен из А , например, в 0 ч 45 мин и он в этот же момент времени по часам В пришел в точку В , то, значит, часы показывают одинаковое время, т. е. идут синхронно. Если же такого совпадения нет, то часы можно синхронизировать, подведя вперед те часы, которые показывают меньшее время в момент отправления сигнала.

Любые события, например два удара молнии, одновременны, если они происходят при одинаковых показаниях синхронизированных часов.

Только располагая в точках А и В синхронизированными часами, можно судить о том, произошли ли два каких-либо события в этих точках одновременно или нет. Для синхронизации часов надо прибегнуть к световым или вообще электромагнитным сигналам, так как скорость электромагнитных волн в вакууме является строго определенной, постоянной величиной.

Именно этот способ используют для проверки часов по радио. Сигналы времени позволяют синхронизировать ваши часы с точными эталонными часами. Зная расстояние от радиостанции до дома, можно вычислить поправку на запаздывание сигнала. Эта поправка, конечно, очень невелика. В повседневной жизни она не играет сколько-нибудь заметной роли. Но при огромных космических расстояниях она может оказаться весьма существенной.

Допустим, что космонавт хочет узнать, одинаково ли идут часы А и В , установленные на противоположных концах космического корабля (рис. 40). Для этого с помощью источника, неподвижного относительно корабля и расположенного в его середине, космонавт и производит вспышку света. Свет одновременно достигает обоих часов. Если показания часов в этот момент одинаковы, то часы идут синхронно.


Но так будет лишь относительно системы отсчета К 1 , связанной с кораблем. В системе же отсчета К , относительно которой корабль движется, положение иное. Часы на носу корабля удаляются от того места, где произошла вспышка света источника (точка с координатой ОС ), и чтобы достигнуть часов А , свет должен преодолеть расстояние, большее половины длины корабля (рис. 41, а, 6). Напротив, часы В на корме приближаются к месту вспышки, и путь светового сигнала меньше половины длины корабля. Поэтому наблюдатель в системе К придет к выводу, что сигналы достигают обоих часов не одновременно.

Два любых события в точках А и В , одновременные в системе К 1 не одновременны в системе К . Но в силу принципа относительности системы К 1 и К совершенно равноправны. Ни одной из этих систем нельзя отдать предпочтение. Поэтому мы вынуждены прийти к заключению, что одновременность пространственно разделенных событий относительна. Причиной относительности одновременности является, как мы видим, конечность скорости распространения сигналов

Именно в относительности одновременности кроется решение парадокса со сферическими световыми сигналами. Свет одновременно достигает точек сферической поверхности с центром в точке О только с точки зрения наблюдателя, находящегося в покое относительно системы К . С точки зрения же наблюдателя, связанного с системой K 1 , свет достигает этих точек в разные моменты времени.

Популярно об Эйнштейне и СТО

Однажды утром, хорошо выспавшись, Эйнштейн сел в кровати и вдруг понял, что два события, которые для одного наблюдателя происходят одновременно, могут быть неодновременными для другого!
То есть у Эйнштейна одновременность событий относительная !


Пример


Женя и Володя забавляются стрельбой из пугачей и играют в игру «Кто первый?». Выстрелишь раньше соперника - выиграешь. А одновременные выстрелы - это ничья. Если бы игроки стояли рядом, было бы просто определить последовательность или одновременность событий, происходящих в одной точке. Но игроки удалены друг от друга: Женя стоит на носу, а Володя - на корме длиннющего, мчащегося с околосветовой скоростью парохода.

Правила судейства таковы: надо, чтобы световые вспышки, посланные от событий в моменты выстрелов, пришли в середину расстояния между событиями. Вместе пришли световые сигналы - налицо одновременность событий, порознь - события неодновременны. Ранний сигнал - от раннего события, поздний - от позднего.

Это и есть эйнштейновское определение одновременности. Обратите внимание: используются световые сигналы, совершенно равнодушные к скоростям их источников.

Правила судейства просты, однако, в сочетании с постулатами Эйнштейна это ведет к неожиданному результату.

Напомню еще раз постулаты. Первый: полное физическое равноправие равномерных прямолинейных движений и покоя. Второй: независимость скорости света от скорости светового источника.

Ради объективности назначаются двое судей: капитан парохода, стоящий на палубе точно посередине между игроками, и бакенщик, который стоит на берегу реки (в какой точке берега, пока неизвестно). По команде вспыхивают выстрелы!
Пусть к капитану обе вспышки с разных сторон доходят вместе. Он объявляет: «Выстрелы одновременны! Ничья!»




Но бакенщик с ним не согласен и кричит: «Одновременности нет! Первым был выстрел на корме!» Почему же возникло несогласие в судейской коллегии?

Пусть для простоты капитан в тот самый миг, когда к нему вместе пришли обе световые вспышки выстрелов, проехал точно мимо бакенщика. Тогда и к бакенщику эти вспышки пришли вместе и он видел то же, что и капитан. Но, в отличие от капитана, бакенщик не мог заявить об одновременности выстрелов, потому что находился не посередине своего, берегового расстояния между выстрелами. Ведь пока свет вспышек шел от игроков к судьям, пароход успел продвинуться вперед. И если капитан, находившийся посередине парохода, лишь после выстрелов поравнялся с бакенщиком, значит, раньше, до сближения судей, место пребывания бакенщика было ближе к носу парохода, то есть к Жениному выстрелу. Пока свет выстрелов шел к судьям, пароход сместился влево.

А поскольку к бакенщику вспышка ближайшего - Жениного - выстрела пришла вместе с Володиной, значит, Володина вспышка путешествовала дольше и отправилась в путь раньше (ибо скорость света не зависит от скорости светового источника - второй постулат). В середину берегового расстояния между выстрелами Володина вспышка добралась наверняка раньше Жениной. Будь там наблюдатель, он и увидел бы Володину вспышку до Жениной. Вот вам и основание для заявления бакенщика о победе Володи.

Итак, двое судей, находясь в одном месте, по-разному оценили одни и те же события. Первый объявил их одновременными, второй - разновременными. Одновременность оказалась не абсолютной, а относительной. Она зависит от движения наблюдателей!

Даже, если бы было наоборот – двигался бакенщик (а с ним вместе и берег), а пароход был бы неподвижен, то, лагодаря безоговорочной относительности скоростей и независимости скорости света от скорости светового источника, результат вышел бы таким же.

От изменения точки зрения на системы отсчета события, регистрируемые в них, не изменятся. Одновременность событий останется относительной.


Еще один фантастический пример:


Я сижу на Земле в кресле и буквально слушаю музыку звезд - звезды-хористы распевают хорал. Но поют они, как я слышу, почему-то вразнобой. Сириус запаздывает со своей мелодией, а Вега спешит. Для космонавта, летящего в ракете, наоборот, Сириус вступает раньше, чем надо. Почему так? Звезды далеки друг от друга, движутся относительно друг друга, да еще слушатели движутся - и получается, что просто невозможно для всех соблюсти главное условие любого хора - одновременность ведения мелодии разными голосами. Для неодинаково движущихся систем отсчета то Сириус запаздывает, то Вега.

Бессмысленно говорить об одновременности удаленных событий, если не сказано, как движется относительно них система отсчета. «Тому, кто сумел уяснить себе это, трудно понять, почему выяснение столь простого факта потребовало много лет точных исследований», - писал Макс Борн, видный ученый и убежденный последователь Эйнштейна.

P.S. Помним, что в любых системах отсчета причина будет предшествовать следствию!

22.01.2015

Урок 36 (10 класс)

Тема. Относительность одновременности событий

Статья Альберта Эйнштейна «Электродинамика движущихся тел», посвященная СТО, была написана в 1905 году, а в 1907 году автор направил ее на конкурс в университет г. Берна. Один из профессоров вернул Эйнштейну его работу со словами: «Того, что вы написали здесь, я совершенно не понимаю». В 1916 году была написана работа по общей теории относительности. Вряд ли существовал другой такой ученый, личность которого была бы столь популярна среди населения всей планеты и вызывала всеобщий интерес.

С точки зрения СТО продолжительность событий, количество движения, масса тела не являются величинами абсолютными, они зависят от скорости движения наблюдаемых объектов относительно наблюдателя. Эффекты СТО начинают проявляться при скоростях, близких к скорости света, а при обычных, земных скоростях движение и характеристики объектов можно рассчитывать по хорошо знакомым классическим формулам. Теория относительности – дальнейшее обобщение, развитие физических законов движения. Она не отменяет, а включает в себя как необходимую составную часть всю классическую механику.
Рассмотрим некоторые следствия, вытекающие из СТО:

Релятивистский закон сложения скоростей.

Если тело движется со скоростью v в одной системе отсчета, то в другой системе отсчета, относительно которой первая система отсчета движется со скоростью v1 в том же направлении, скорость тела определяется выражением:

Из этой формулы:

  • при v<

Относительность одновременности событий

В механике Ньютона одновременность двух событий абсолютна и не зависит от системы отсчёта. Это значит, что если два события происходят в системе K в моменты времени t и t 1 , а в системе K’ соответственно в моменты времени t’ и t’ 1 , то поскольку t=t’, промежуток времени между двумя событиями одинаков в обеих системах отсчёта

В отличие от классической механики, в специальной теории относительности одновременность двух событий, происходящих в разных точках пространства, относительна: события, одновременные в одной инерциальной системе отсчёта, не одновременны в других инерциальных системах, движущихся относительно первой. На рисунке расположена схема

эксперимента, который это иллюстрирует. Система отсчета K связана с Землёй, система K’ - с вагоном, движущимся относительно Земли прямолинейно и равномерно со скоростью v. На Земле и в вагоне отмечены точки А, М, В и соответственно А’, M’ и В’, причем АМ=МВ и А’M’=M’B’. В момент, когда указанные точки совпадают, в точках А и В происходят события - ударяют две молнии. В системе К сигналы от обоих вспышек придут в точку М одновременно, так как АМ=МВ, и скорость света

одинакова во всех направлениях. В системе К’, связанной с вагоном, сигнал из точки В’ придет в точку M’ раньше, чем из точки А’, ибо скорость света

одинакова во всех направлениях, но М’ движется навстречу сигналу пущенному из точки B’ и удаляется от сигнала, пущенного из точки А’. Значит, события в точках А’ и B’ не одновременны: события в точке B’ произошло раньше, чем в точке A’. Если бы вагон двигался в обратном направлении, то получился бы обратный результат.


Понятие одновременности пространственно разделенных событий относительно. Из постулатов теории относительности и существования конечной скорости распространения сигналов следует, что в разных инерциальных системах отсчёта время протекает по-разному.

Преобразования Лоренца

В соответствии с двумя постулатами специальной теории относительности междукоординатами и временем в двух инерциальных системах К и К" существуютотношения, которые называются преобразованиями Лоренца. В простейшем случае, когда система К’ движется относительно системы К соскоростью v так, как показано на рисунке (см ниже), преобразования Лоренцадля координат и времени имеют следующий вид:

, , , ,

, , , .

Из преобразований Лоренца вытекает тесная связь между пространственными и временными координатами в теории относительности; не только пространственные координаты зависят от времени (как в кинематике), но и время в обеих системах отсчёта зависит от пространственных координат, а также от скорости движения системы отсчёта K’.

Формулы преобразований Лоренца переходят в формулы кинематики при v/c<<1.

В этом случае

Переход формул теории относительности в формулы кинематики при условии v/c<<1 является проверкой справедливости этих формул.

Домашнее задание:

1. Е.В. Коршак, А.И. Ляшенко, В.Ф. Савченко. Физика. 10 класс, «Генеза», 2010. Повторить §37 (с.127-129).

2. Учить лекционный материал.

3. Ответить на вопросы 1-3 устно с.129.

| следующая лекция ==>
Из истории теории относительности |